
Page 1 of 88
Printed on 31/05/04

Personal Project Estimation Tool

Group ?

Simon Newton
Poya Manouchehri

Steven Kah Hien Wong

Version 1.0

Page 2 of 88
Printed on 31/05/04

This document was produced as part of the year 2004 Software quality & Measurement course at
the University of Western Australia. Note that no responsibility is taken for the effectiveness or
completeness of any estimates or plans produced using this document. It may be used freely for the
improvement of the software planning process and is not for sale. Any reproduction must include
an acknowledgment of the authors and have this statement included on the inside cover. For further
information contact the School of Computer Science and Software Engineering at the University of
Western Australia or write to Terry Woodings, PO Box 88, Nedlands, Western Australia 6009.

Page 3 of 88
Printed on 31/05/04

About Group ?

The group name “Group ?” represents the uncertainty experienced by our group members during
the initial stages of the project, as to what group we were actually in. The team started out as half of
Group G, which was split when it reached a size of eight. Four members were taken a put into
Group H, and by the end of week two we were down to three members. After possibly losing a
second group member, plans were put in place disband the team. However, the members felt that
much had already been achieved, the group continued giving rise to our unique group name.

About the Logo

The logo, drawn by Steven Kah Hien Wong, uses the question mark contained in a jail as a
metaphor for containing (reducing) the uncertainty in the estimation process. To be useful, the
estimation procedure must be as objective as possible to reduce the influences of bias.

Page 4 of 88
Printed on 31/05/04

Revision History

Date Person Change
1 Apr Poya Manouchehri Added feature point templates
3 Apr Simon Newton Added COCOMO II
8 Apr Simon Newton Separated COCOMO II into templates and user guide
15 Apr Steven Kah Hien Wong Added PERT template, PIR table and brief user guide
16 Apr Poya Manouchehri Modified feature point templates. Replaced IFPUG

Value Adjustment Factor (VAF) with Complexity
Multiplier.

17 Apr Simon Newton Added value for Java FP to KSLOC convertion
19 Apr Poya Manouchehri Added feature point user guide and PIR
19 Apr Simon Newton Modified COCOMO II templates and user guide
20 Apr Simon Newton Added risk analysis section
20 Apr Steven Kah Hien Wong Added full PERT user guide
21 Apr Steven Kah Hien Wong Modified the PERT template and PIR
22 Apr Poya Manouchehri Added preface section
25 Apr Poya Manouchehri Added feature point checklist
26 Apr Simon Newton Modified risk analysis section. Moved from estimating

confidence interval to a separate process.
26 Apr Poya Manouchehri Added process combination template and PIR
27 Apr Steven Kah Hien Wong Added PERT checklist
29 Apr Simon Newton Added confidence interval to COCOMO guide and

templates
29 Apr Simon Newton Added disclaimer
29 Apr Simon Newton Edited and revised section 1
1 May Simon Newton Modified the PMAT factor for COCOMO
8 May Simon Newton Added COCOMO and Combination Checklists
8 May Simon Newton Revised Risk Management Section
10 May Poya Manouchehri Revised effort and duration section of feature point

templates and user guide.
10 May Poya Manouchehri Modified PIR section for feature points
12 May Poya Manouchehri Added new items to feature points checklist
14 May Simon Newton Added COCOMO PIR
15 May Steven Kah Hien Wong Added Team Size to PERT template
15 May Steven Kah Hien Wong Converted PERT estimation units from Months to Days
20 May Simon Newton Fixed some descriptions in the COCOMO guide
20 May Simon Newton Revised Risk Management section (again).
22 May Simon Newton Added example
27 May Simon Newton Added References Section
27 May Simon Newton Added information and checklists on code counting
29 May Poya Manouchehri Revised Feature Point PIR
29 May Simon Newton Added Normal Table (Appendix A)
29 May Poya Manouchehri Added combination PIR description
30 May Simon Newton Added Review Triggers
30 May Steven Kah Hien Wong Glossary
31 May Poya Manouchehri Added to references
31 May Steven Kah Hien Wong Finalised Page, Section and Figure Numbering
31 May All Proof read final document

Page 5 of 88
Printed on 31/05/04

Contents

1. Preface
1.1 The Problem 7
1.2 Available Tools 8
1.3 Process Overview 9
1.4 Assumptions and Constraints 11
1.5 Guidelines on the Effective Use of PPET 11

2. Estimation User Guides
2.1 Feature Point Analysis User Guide

2.1.1 How to use the Templates 13
2.1.2 Component Definitions 15
2.1.3 Component Complexity Guidelines 16
2.1.4 Hours per Feature Point 17
2.1.5 Duration 17

2.2 COCOMO II User Guide
2.2.1 Estimating Size

2.2.1.1 Using Unadjusted Feature Points 18
2.2.1.2 Direct Estimation using Simplified Delphi Techniques 19

2.2.2 Scaling Factor β 20
2.2.3 Cost Drivers 23
2.2.4 Expected Effort 28
2.2.5 Confidence Interval 28
2.2.6 Duration 30

2.3 PERT Estimation User Guide 31
2.4 Risk Management User Guide

2.4.1 Identify the Risks 34
2.4.2 Assign Values 35
2.4.3 Risk Exposure 35
2.4.4 Expected Risk Exposure 35

2.5 Process Combination User Guide 36

3. Estimation Templates
3.1 Feature Point Analysis Templates

3.1.1 Feature Point Count 37
3.1.2 Complexity Multiplier 38
3.1.3 Effort 39
3.1.4 Duration 39

3.2 COCOMO II Templates
3.2.1 Estimating Size 40
3.2.2 Scale Factors 43
3.2.3 Cost Drivers 44
3.2.4 Expected Effort 45
3.2.5 Confidence Interval 45
3.2.6 Duration 45

3.3 PERT Estimation Templates
3.3.1 Individual Estimator Form 46
3.3.2 Work Unit Estimate Form 47
3.3.3 Project Estimate Form 48

Page 6 of 88
Printed on 31/05/04

3.4 Risk Management Templates 49
3.5 Process Combination Templates 50

4. Estimation Review Triggers 51

5. Checklists
5.1 Feature Point Analysis Checklist 52
5.2 COCOMO II Checklist 53
5.3 PERT Estimation Checklist 54
5.4 Risk Management Checklist 56
5.5 Process Combination Checklist 57

6. Project Database and Post-Implementation Review
6.1 Feature Point Database and PIR 58
6.2 COCOMO Database and PIR

6.2.1 Feature Point to KSLOC factor 60
6.2.2 Revise the value of A 61

6.3 PERT Database and PIR 63
6.4 Process Combination Database and PIR 65

7. Estimation Example
7.1 Problem Statement 67
7.2 Feature Points Example

7.2.1 Feature Point Count 68
7.2.2 Complexity Multiplier 70
7.2.3 Effort 71
7.2.4 Duration 71

7.3 COCOMO II Example
7.3.1 Estimating Size 72
7.3.2 Scale Factors 73
7.3.3 Cost Drivers 74
7.3.4 Expected Effort 75
7.3.5 Confidence Interval 75
7.3.6 Duration 75

7.4 PERT Example
7.4.1 Individual Estimator Forms 77
7.4.2 Work Unit Estimate Form 79
7.4.3 Project Estimate Form 80

7.5 Process Combination Example 81

8. Glossary 82

9. References 83

Appendix A – Cumulative Probabilities for the Normal Distribution 85

Appendix B – Code Counting Checklist 86

Appendix C – Example Code Counting Checklist 88

Page 7 of 88
Printed on 31/05/04

1. Preface

1.1 The Problem

One of the main characteristics of a good engineer is the ability to manage the development of a
project around a schedule and budget. In almost all cases, the clients or customers require the
engineering group to produce an estimate of the duration and cost of the development, at early
stages of the project, as a basis for an agreement or contract. Hence, the task of estimating project
cost and duration, is one of the key responsibilities of a team manager.

While estimation is strongly tied to uncertainty, for many engineering disciplines it can be carried
out accurately and reliably, for example in civil engineering. This is primarily due to the fact that
the effort required for such engineering tasks tend to scale linearly with size. For instance if a one
kilometre road costs $C and takes T months to finish, a ten kilometre road over similar terrain will
have a cost of approximately $C × 10 and will take in the order of T × 10 months to complete. In
addition, one can obtain a value representing the size of the project (in this case, the length of the
road) at the beginning of the project. Furthermore, this value is unlikely to change by a large
amount (the length of the road is relatively fixed, barring any obstacles that must be avoided).

In the field of software engineering however, estimation is a significantly harder task. Firstly, there
is no direct, objective measure for the size of a software project. Even the most obvious metric, the
number of lines of source code, isn’t a precise measure as it is dependant upon the implementation
language (imagine building a road where the required length depended upon what method was used
to construct the road!). Therefore, metrics that do exist to tend to be proxies for the actual size,
such as function points, or entity counts.

Secondly, past data indicates that the effort and cost does not scale linearly with size. Factors such
as integration costs and module testing means that the effort required to build a system is often
much larger than the effort required to build the separate components.

Software systems tend to undergo significantly more change during their development than any
other types of systems. This is known as requirement creep or “creeping featurism”. This is brought
about not only from the clients (asking for more features), but also by the programmers themselves,
as they want to add “that one last feature”. A manager wanting to deliver on time and budget must
keep both parties in check.

Finally, the end point of a software engineering project is rarely defined. Most projects end through
negotiation, with the project manager and the client sitting down and discussing what has been
delivered, and what remains unimplemented. In terms of estimation, we are trying to estimate an
end point, which in reality doesn’t exist.

The difficulty in software project estimation can be expressed as:

Not only are our goal posts moving, but they’re getting further away and are invisible!

Page 8 of 88
Printed on 31/05/04

1.2 Available Tools

Despite the seemingly impossible situation faced by those whose task it is to accurately estimate
software projects, many important tools and techniques have been developed. Usually these
methods involve some form of measuring the “size” of the software, and then arriving at a figure
for effort and duration. It is also common practice to subdivide the project into smaller,
independent deliverables, which may be estimated separately. However, the warning above about
the cost of the software whole being greater than the sum of the parts still holds true.

Some of the approaches to estimating software size include:

Memory Usage. Possibly the oldest metric used to determine a program’s size. The amount of
memory required to execute the program was measured. For simple programs, this could often be
calculated by counting the number and types of variables in scope at any time during the execution.
Using memory usage as a proxy for size has fallen out of favour as projects have become
significantly more complex and memory has increased from the low kilobytes to the hundreds of
megabytes.

Kilo Source Lines of Code (KSLOC). Lines of source code is the intuitive way of measuring the
size of software. Unfortunately like all size metrics it has limitations. As with memory usage, the
actual KSLOC value is only known once the project has been delivered. Secondly, the values for
lines of code is highly dependent upon the programming language used. In addition to this, KSLOC
is far from an objective measure. For instance, what constitutes a line of code? Are comments
counted? What about begin and end blocks (or braces in C) ? Organisations relying on lines of code
as a measure of size need to have a well defined checklist of what is and isn’t included.

Function Points: Function Point Analysis and its derivative methods, are currently one of the best
size metrics available to software engineers. A function point is a small unit of functionality within
the software system. Function points can be calculated by counting components such as number of
user interfaces that the system will have, or how many input files there will be. Since these
components are part of the problem domain, rather than the solution (unlike size metrics such as
KSLOC), function points can be counted with little uncertainty. Some derivatives of Function
Points, are Feature Points (used in this estimation tool) and 3D Function Points. Note that function
point analysis only produces an estimate of the project’s size, and still needs to be converted to
effort and duration.

As with calculating size, there are a number of methods that can be used to estimate effort and
duration. Some of these rely on having previously calculated the size of the system (such as
COCOMO) while others rely on experience from past projects.

Algorithmic: These methods use some sort of a mathematical expression, in order to predict the
duration (or cost) of a project, based on its size and other input parameters such as complexity of
the system and team dynamics. Putnam’s SLIM and Boehm’s COCOMO and COCOMO II models
are examples of algorithmic estimation methods.

Analogy: This involves deriving the duration directly from previous projects, using multiplicative
and additive factors. Given n previous projects, the estimate may look something like

)(
1

1
ii

n

i
i AfActualMf

n
Estimate +•= ∑

=

Page 9 of 88
Printed on 31/05/04

where Mfi and Afi are the multiplicative and additive factors, respectively. Estimation from
analogy requires the existence of reliable data from past projects, preferable from within the same
organisation.

Expert Opinion: One of the most widely used estimation methods is expert opinion. This typically
involves breaking the project into smaller parts and having experts make estimations on each.
These estimates are used to calculate a mean and variance (confidence interval). PERT and Delphi
methods are examples of expert opinion estimation. This has the advantage of not requiring
information from previous projects, but instead relying on the experts experience to guide them in
the estimation process.

1.3 Process Overview

This estimation tool can be separated into three separate processes:

1) The actual estimation of duration using three methods, Feature Point Analysis, a refined
COCOMO II method, and PERT (a form of expert opinion). An overview of this process is
shown in Figure 1.1 on the next page and a description of each method follows.

Feature Point Analysis
A feature point analysis is carried out which gives a measure for the size of the software. It
is then converted into effort using past data (or supplied default values) for hours per feature
point. A confidence interval is then calculated, and the values for pessimistic effort,
expected effort and optimistic effort are converted into estimates for duration.

COCOMO II
The unadjusted feature point count can be used as the input for the COCOMO II model or
alternatively an estimate of size in Kilo-Lines-of-Source-Code KSLOC can be made using
Delphi techniques. Once the size is determined, the COCOMO II process is used to obtain
an estimate for the amount of effort that will be required for the project. A confidence
interval is then calculated, depending on the level of confidence required, and the stage the
project is at. This is then converted into an estimate for the pessimistic, expected and
optimistic duration.

 PERT
PERT is quite independent from the other two methods. It directly gives a estimation of
duration, as well as variance and confidence interval using expert opinion.

The final step in this process involves combining the three duration estimates, taking into
account the performance of each method in previous projects. A risk analysis of the project is
also carried out which is used to give an estimate for the amount of additional effort required in
the project.

2) The second process involves a set of review triggers that see the estimation process described
above being repeated, as new information about the problem or solution become available.
Reviews must be carried out at the suggested stages, in order to ensure that the estimated
duration and the confidence interval always reflect all the available information.

Page 10 of 88
Printed on 31/05/04

The Estimation Process

Figure 1.1. An overview of the estimation process

PERT estimation:
Directly get
duration and

confidence interval.

Feature Point
Analysis

Convert to Feature Point
Count to effort using
Hours/Feature Point.

Convert KLOSC to
expected effort using
modified COCOMO II
model.

Convert to Feature Point
Count Kilo Lines of
Source Code (KLOSC)

Calculate optimistic,
expected, and pessimistic
effort.

Calculate optimistic,
expected, and pessimistic
duration.

Combine the three
methods and obtain final
value for optimistic,
expected, and pessimistic
duration.

Adjusted
Feature Point
Count

Unadjusted
Feature Point
Count

Risk Analysis

Calculate optimistic,
expected, and
pessimistic duration.

Calculate confidence
interval

KLOSC
estimate

Final outputs:
• Pessimistic Duration
• Expected Duration
• Optimistic Duration
• Expected Risk Exposure

Page 11 of 88
Printed on 31/05/04

3) The third and final process is the post implementation review (PIR). This is a critical part of the
estimation tool, as it uses information obtained from past projects to refine future estimations.
There are four distinct PIRs that are carried out in this process. The first three refine each of the
estimation methods in the first section (ie Feature Point Analysis, COCOMO II, and PERT).
The final PIR refines the weights that are used to combine the estimations produced by these
three methods. That is, the method(s) that had performed better in estimating durations for past
projects, will be given a higher weighting for future estimations.

1.4 Assumptions and Constraints

This estimation tool is subject to the following set of constraints and assumptions:

• The estimation tool uses a feature point analysis as part of the estimation process. It is
therefore assumed to be suitable for both transactional systems and real-time applications
that are algorithm intensive.

• We have assumed that Feature Points are close enough to Function Points, as to be used for
size measurements under the COCOMO II model.

• That the people using this tool have a reasonable knowledge of the estimation process, and
have past experience either managing or working on software projects.

1.5 Guidelines on the Effective Use of the PPET

The following are a set of general guidelines that will aid in the use of this tool and help to improve
the accuracy of the estimations.

• Each estimation will need a copy of the templates. It is recommended that a photocopy be
made of the following sections

o Section 3
o Section 5

• Many templates have spaces provided for comments. Use these to provide justification for
the values obtained. This is particularly important when subjective decisions must be made
such as choosing the rating for the COCOMO factors. Descriptive comments will assist
both you and others in the future to learn from the estimates. Remember, what is obvious
now, will be forgotten tomorrow – write it down.

• Divide the project into as many independent sub-tasks as possible. This is specifically
useful for PERT estimation, as the experts are more likely to produce better estimates for
smaller tasks.

• Use ALL three methods of estimations available in this tool and combine them as described.
Relying on a single estimation method is risky at best.

• After carrying out an estimation, make sure that a different person signs off the work by
going through the checklists available. This ensures that there are no simple errors in
calculations, and that the original estimator has not missed any critical information.

Page 12 of 88
Printed on 31/05/04

• Review your estimations whenever a factor that may affect the estimate changes. The
section on Review Triggers (Section 4), describes in more detail when the estimations
should be reviewed. This ensures that your duration estimations always reflect the latest
information about the state of the project. It also gives you a more definitive confidence
interval as more knowledge about the problem and/or solution is gained.

• As mentioned before, Post Implementation Reviews (PIRs) are critical to improving the
estimations. Processes such as COCOMO rely heavily on calibration to a specific
organisation. It is expected that the estimates produced by the initial versions of this tool
will vary substantially from actual values until enough data has been collected to calibrate
the tool. In a similar manner, attempting to calibrate the tool using data from projects of
vastly different size and domains will not produce reliable estimates.

• Once both the estimation and checklists have been completed, they should be archived for
future reference. They will be needed again for the PIR, and should be kept as they provide
valuable past data and insight into the estimation process.

Page 13 of 88
Printed on 31/05/04

2.0 User Guides

2.1 Feature Point Analysis User Guide

2.1.1 How to use the Templates

In order to make an estimate of effort and duration using feature point count, the feature point
templates in section 3.1 need to be completed. The following steps describe how the templates
should be filled:

1) The upper portion of the main template (Figure 3.1) consists of six sections, namely
Algorithms, External Inputs, External Outputs, External Inquiries, Internal Logic Files, and
External Interface files. Each of these component types is described in more detail in section
2.1.2 . You must identify the number of each of these components in your project.

2) After identifying the components, you must categorise them, based on their complexity.
Section 2.1.3 is a guideline for assigning complexities to the components.

3) Now fill the upper section of the main template by writing the number of each of the
components, under the appropriate complexity column. Multiply the numbers with their
specified weights and write the result in the space provided. For each component type, sum
the counts for low, average, and high complexity columns, and write the result in the right
hand column (Total).

4) Sum the totals to get the unadjusted feature points. Write this value, labeled [A1], in the
appropriate box.

5) In the complexity multiplier template (Section 3.1.2), pick an appropriate number for
Problem Complexity and Data Complexity (from 1 to 5). Add these two numbers to get a
value between 2 and 10. Finally use this sum to look up an appropriate weight in Figure 3.2
(the weight is between 0.6 and 1.4). This is the complexity factor. Write it in the appropriate
box (labeled [A2]) in the Figure 3.1.

6) In the main template, multiply the unadjusted feature points with the complexity factor, to
obtain the adjusted feature point count (labeled [A3]).

7) The next step is converting the adjusted feature points to values for optimistic, expected,
and pessimistic effort, in section 3.1.3. To do this, first write down the number of effective
working hours per month (HPM) for you organization. The default value of HPM is 85 (5
hours per day, 17 days per month). Also obtain the value of MMRE and R(C) from the PIR
section 6.1 . Note that

• R(C) is the equation for hours per feature point, calculated in the PIR for feature points
(Section 6.1). If no past project data are available, use the model described in section
2.1.4

• MMRE is the mean magnitude of relative error, also calculated in the PIR for feature
points (Section 6.1). If no past project data are available, set the MMRE to 0.

• For optimistic and pessimistic effort estimates, we deviate from the actual feature point
count by ±12%, which reflects uncertainty in the accuracy of the count and is taken
from Kemerer (1993)

Page 14 of 88
Printed on 31/05/04

• The
HPM

1
 factor converts the effort from person hours, to person months

Now we can calculate each of optimistic, expected, and pessimistic effort values by using
the following equations:

Effort optimistic
HPM

ARMMREA
1

)88.0]3([)1(88.0]3[×××−××=

Effort expected
HPM

ARA
1

])3([]3[××=

Effort pessimistic
HPM

ARMMREA
1

)12.1]3([)1(12.1]3[×××+××=

8) The final step is converting the values obtained for effort, to durations (section 3.1.4). We
simply use an exponential model, taken from original COCOMO, to do this conversion.
Please refer to section 2.1.5 for details of converting effort to duration.

Page 15 of 88
Printed on 31/05/04

2.1.2 Component Definitions

Algorithm – is the set of rules, which must be completely expressed to solve a significant
computational problem. For example, a square root extraction routine, or a Julian date conversion
routine, would both be considered algorithms.

External Input (EI) - is an elementary process in which data crosses the boundary from outside to
inside. This data may come from a data input screen, electronically or another application. The data
can be either control information or business information. If the data is business information it is
used to maintain one or more internal logical files. If the data is control information it does not have
to update an internal logical file.

External Output (EO) - an elementary process in which derived data passes across the boundary
from inside to outside. The data creates reports or output files sent to other applications. These
reports and files are created from one or more internal logical files and external interface file .

Derived Data is data that is processed beyond direct retrieval and editing of information from
internal logical files or external interface files. Derived data is the result of algorithms, and/or
calculations. Derived data occurs when one or more data elements are combined with a formula to
generate or derive an additional data element(s).

External Inquiry (EQ) - is an elementary process with both input and output components that
result in data retrieval from one or more internal logical files and external interface files. This
information is sent outside the application boundary. The input process does not update any Internal
Logical Files and the output side does not contain derived data.

Internal Logical File (ILF) – is a user identifiable group of logically related data that resides
entirely within the applications boundary and is maintained through External Inputs.

External Interface File (EIF) - a user identifiable group of logically related data that is used for
reference purposes only. The data resides entirely outside the application and is maintained by
another application. The External Interface File is an Internal Logical File for another application.

Page 16 of 88
Printed on 31/05/04

2.1.3 Component Complexity Guidelines:

Algorithm:
Algorithm Type Complexity
Simple [eg. A = B + C*(D-E)] or moderate expressions [
eg. D = SQRT(B*2-4*A*C)]

Low

Standard math and statistical routings. Basic matrix/vector
operations. Basic numerical analysis. Ordinary differential
equations. Basic truncation and round off.

Average

Difficult numerical analysis. Analysis of noisy, stochastic
data. Partial differential equations. Parallelization.

High

Figure 2.1.

External Input:

Data Element Types
File Types Referenced 1 - 4 5 - 15 > 15
0 - 1 Low Low Average
2 Low Average High
> 2 Average High High

Figure 2.2.

External Output, External Inquiry:

Data Element Types
File Types Referenced 1 - 5 6 - 19 > 19
0 - 1 Low Low Average
2 - 3 Low Average High
> 3 Average High High

Figure 2.3.

Internal Logic Files, External Interface Files:

Data Element Types
Record Element Types 1 - 19 20 - 50 > 50
1 Low Low Average
2 - 5 Low Average High
> 5 Average High High

Figure 2.4.

Page 17 of 88
Printed on 31/05/04

2.1.4 Hours Per Feature Point

If no data from previous projects are available, use the following equation to calculate the value of
R (hours per feature point). This equation is based on data collected from nearly 1,000 projects
from over 100 companies, available on the IFPUG website (Longstreet, 2003). It is however
strongly recommended that the equation for R be based on your company’s past projects, as it is a
highly organizational specific factor.

CeCR •= 0003049.041.1)(

If the above formula is used, the MMRE should be set to 0. This does NOT indicate the lack of
uncertainty in the estimate, rather that no confidence interval can be reliably predicted due to the
lack of past data.

2.1.5 Duration

To convert the effort obtained in section 3.1.3 to duration, use the following equation:

Duration in Months = a × Effort b

Where the values of a and b are selected from the following table:

Development Mode a b
Organic 2.5 0.38
Semidetached 2.5 0.35
Embedded 2.5 0.32

Figure 2.5.

Organic Mode – The project is developed in a familiar, stable environment, and the product is
similar to previously developed products. The product is relatively small, and requires little
innovation. Example: An accounting system.

Semidetached Mode – The project’s characteristics are intermediate between Organic and
Embedded

Embedded Mode – The project is chacterised by tight, inflexible constraints and interface
requirements. An embedded mode project will require a great deal of innovation. Example: A real-
time system with timing constraints and customised hardware.

Page 18 of 88
Printed on 31/05/04

2.2 COCOMO II User Guide

This section deals with producing an effort and duration estimate using a modified COCOMO II
model.

• Estimate the size using lines of source code

• Calculate the scale factor B

• Calculate the cost driver multiplier M

• Calculate the expected effort and duration

2.2.1 Estimating Size

The COCOMO II model requires an estimate for the size of the system in thousands of lines of
source code (KSLOC). This can be produced by either directly estimating the size of modules, or
by converting the feature point count to KSLOC by using a lookup table. Early in the development
process, when system design has not been completed, it is recommended to use the unadjusted
feature point count to produce an estimate for the size of the system. Once design has been
completed, and the number and scope of modules defined, the size (in KSLOC) of each module can
be estimated directly.

It is strongly recommended that the first time this tool is used, the organisation develops a standard
for counting lines of source code. A checklist has been provided in Appendix B, along with details
on how it is to be used. Appendix C provides a sample of what a completed checklist might look
like. For more information on counting lines of code see Software Size Measurement: A Framework
for Counting Source Statements (Park 1992).

2.2.1.1 Using Unadjusted Feature Points

Copy the figure for unadjusted feature points obtained in Figure 3.1 into the field marked [B1].
Multiply [B1], by the figure obtained from Figure 2.6 for the specified development language, and
enter the result into [B2].

Page 19 of 88
Printed on 31/05/04

Language SLOC / UFP
4GL (average) 15
Ada 71
AI Shell 49
APL 32
Assembly 320
Assembly (Macro) 213
ANSI / Quick / Turbo Basic 64
Basic - Compiled 91
Basic - Interpreted 128
C 128
C++ 29
ANSI Cobol 85 91
Fortran 77 105
Forth 64
Jovial 105
Lips 64
Java 23
Modula 2 80
Pascal 91
Prolog 64
Report Generator 80
Smalltalk 20
Spreadsheet 8
SQL 12
Visual Basic 32

Figure 2.6. Used to convert between feature points and lines of source code (Boehm 2000)

Divide [B2] by 1000, to get an estimate for the size of the system in thousands of lines of source
code, and enter the result into [B3].

Proceed to section 2.2.2 to calculate the scale factor

2.2.1.2 Direct Estimation using Simplified Delphi Techniques

As previously mentioned, this approach requires the number and scope of modules to be defined,
and hence requires system level design to be complete. Note here that the word module is used in a
implementation independent manner. It could refer to classes in Java, modules in Perl, or files in C.

Each module should be listed in the first column of Figure 3.3 (add more rows if required). For
each module, multiple experts should be approached and, on being supplied with the module
specification, asked to estimate the number of kilo lines of code it would take to implement the
module. These experts would typically be the developers responsible for the implementation of the
module, as they would have first hand knowledge of the relative size of the module.

It is very important that these experts be kept isolated and do not communicate their estimate to one
another. The estimates are collected, and entered into Figure 3.4. Once all estimates are in, the
average is calculated and entered into the final column of Figure 3.4.

The average for each module is then returned to the experts, and they are given the opportunity to
revise their estimate. The new estimates are then entered into Figure 3.4, and again the average is
calculated. Finally the sum of all the averages is obtained, and entered into the cell marked [B3].

Page 20 of 88
Printed on 31/05/04

2.2.2 Calculation of Scaling Factor (ββββ)

This reflects the dis-economies of scale associated with a software project. That is if the size of the
system doubles, the amount of effort required increases by a factor larger than 2. This represents in
increased costs in managing team members, communication overheads etc.

Five factors affect the scaling driver. A description of each is given below, followed by a table
which lists the choices and the weights. For the factors, select the choice that most closely matches
the situation faced by the project. Then enter the appropriate weight into Figure 3.5 in the template
section.

Precedentedness (PREC)

This value models the organisation's past experience with projects of a similar type. The range is
from very low (5) indicating the organisation has no previous experience with a project of this type,
to extremely high, which would indicate that the organisation has an in depth understanding of the
application domain.

Questions to be considered include :

• How well are the product objectives understood?
• What is the organisation's experience with related software?
• Will this project require the concurrent development of new hardware and/or operating

procedures?
• Will the project require new and innovative data processing algorithms?

Very Low Low Nominal High Very High Extremely
High

Precedentedness
(PREC)

thoroughly
unprecedented

largely
unprecedented

somewhat
unprecedented

generally
familiar

largely familiar throughly
familiar

Value 5 4 3 2 1 0
Figure 2.7

Development Flexibility (FLEX)

This models the flexibility of the development process. If the client specifies only the general goals
of the project (ie little client intervention in the development process) a value of extremely high
should be used. However, if the development process is completely specified and rigorously
controlled by the client, a value of very low should be used.

Questions that should be considered include:

• Is there a need for software conformance with pre-established requirements?
• Is there a need for software conformance with external interface specifications?
• Is there a premium on early completion of the project?

Page 21 of 88
Printed on 31/05/04

Very Low Low Nominal High Very High Extremely
High

Development
Flexibility
(FLEX)

rigorous occasional
relaxation

some
relaxation

general
conformity

some
conformity

general goals

Values 5 4 3 2 1 0
Figure 2.8

Risk Resolution (RESL)

This reflects the amount of risk analysis performed by the organisation. Consider the following
questions:

• Has a risk identification and analysis been performed? Section 2.4 should be used as a basis
for this.

• Have milestones been set to revolve important risk items?
• Are the risks being managed? Have contingency plans been developed for the most

important risks?
• Is a risk monitoring procedure in place? If so, is it performed regularly?
• Are there tools available for monitoring and resolving risk items?

Very Low Low Nominal High Very High Extremely
High

Risk Resolution
(RESL)

little (20%) some (40%) often (60%) generally
(75%)

mostly (90%) full (100%)

Values 5 4 3 2 1 0
Figure 2.9

Team Cohesion (TEAM)

This accounts for how well the development team work together. A value of extremely high reflects
a integrated team that understand each other well. A value of very low would be used for a team
that has difficult or minimal interactions.

Factors to consider include:

• Consistency of members objectives and cultures
• Ability and willingness of members to accommodate other members objectives
• Experience of members in operating as a team
• Extent of team building exercises undertaken

Very Low Low Nominal High Very High Extremely
High

Team Cohesion
(TEAM)

very difficult
interactions

some difficult
interactions

basically
cooperative
interactions

largely
cooperative

highly
cooperative

seamless
interactions

Values 5 4 3 2 1 0
Figure 2.10

Page 22 of 88
Printed on 31/05/04

Process Maturity Factor (PMAT)

This rates the maturity of the software development process within the organisation. It is based on
the Software Engineering Institute’s Capability Maturity Model (CMM) which defined five levels
of maturity for the software development process. It is expected that the organisation has a good
understanding as to which level of the CMM it is operating at. The levels are briefly described
below but for a more detailed description of the CMM, see Paulk 1993.

Initial Level. At this level, an organisation does not have effective management procedures or
project plans. If formal procedures for project control exist, there are no organisational mechanisms
to ensure that they are used consistently. The organisation may successfully develop software but
the characteristics of the software (quality etc.) and the process (budget, schedule etc.) will be
unpredictable.

Repeatable Level. At this level, the organisation has formal management, quality assurance and
configuration control procedures in place. It is called the repeatable level because the organisation
can successfully repeat projects of the same type. However there is a lack of a formal process
model. Project success is dependent on individual managers motivating a team and on
organizational folklore acting as an intuitive process description.

Defined level. At this level, an organisation has a defined its process and thus has a basis for
qualitative process improvement. Formal procedures are in place to ensure that the defined process
is followed in all software engineering projects.

Managed level. A level 4 organisation has a defined process and a formal program of quantitative
data collection. Process and product metrics are collected and fed into the process improvement
activity.

Optimising level. At this level, an organisation is committed to continuous process improvement.
Process improvement is budgeted and planned and is an integral part of the organisation’s process

Process Maturity
Factor (PMAT)

Initial Repeatable Defined Managed Optimizing

Value 4 3 2 1 0
Figure 2.11

Calculation of Scaling Factor B

Sum the PREC, FLEX, RESL, TEAM and PMAT factors, and enter the result into [B4]

Calculate the value of the scaling factor β, by using the following formula, and enter the result into
[B5]

β = 1.01 + 0.01 x [B4]

Page 23 of 88
Printed on 31/05/04

2.2.3 Cost Drivers

COCOMO II uses sixteen cost drivers to refine the estimate. Each of these are described below, and
a weight should be chosen for each, and entered into Figure 3.6. In the case where a driver does not
seem appropriate, the weight of 1.0 should be used, although note that the accuracy of the estimate
will be comprised by omitting factors.

Required Software Reliability (RELY)

This factor models the required reliability of the software. It is determined by estimating the impact
that a software failure would cause.

RELY slight inconvenience low, easily
recoverable

moderate, easily
recoverable

high financial loss risk to human
life

Weight 0.75 0.88 1.0 1.15 1.39
Figure 2.12

Database size (DATA)

This factor considers the effect that large data sets will have on development time by calculating
the a value for D/P. Large data sets typically cause an increased in development time due to the
large number of test cases that must be produced.

The D/P factor is measured in bytes per line of code. It is calculated using the following:

D/P = Database Size (Bytes) / Program Size

Where program size is the value obtained for B3 in section 3.2.1 (from either feature points or lines
of code). Note that the above formula deals with lines of code and not kilolines of code.

The value for D/P is then used to determine the value for the DATA factor from the table:

DATA D/P < 10 10 < D/P < 100 100 < D/P < 1000 D/P > 1000
Weight 0.93 1.0 1.09 1.19

Figure 2.13

Documentation match to life-cycle needs (DOCU)

This factor accounts for the extra effort involved in producing documentation. It is estimated by
comparing the level of documentation needed for the development process to that which will be
produced. For example, documentation that leaves many of the life cycle uncovered (sparse
documentation) would be assigned a ranking of very low. On the other hand excessive
documentation, that more than covers the needs of the project life cycle would be rated as very
high.

DOCU Many needs
left uncovered

Some needs
left uncovered

Right sized for
project life cycle

Excessive for project
life cycle needs

Very excessive for
project life cycle needs

Weight 0.89 0.95 1.0 1.06 1.13
Figure 2.14

Page 24 of 88
Printed on 31/05/04

Required Re-usability (RUSE)

Increased effort will be required to develop reusable components due to standardizing interfaces,
increased documentation and more elaborate testing. The RUSE factor represents this increased
effort, by rating the level of re-usability required.

RUSE none across project across program across product line across multiple product lines
Weight 0.91 1.0 1.14 1.29 1.49

Figure 2.15

Execution Time Constraint (TIME)

This driver accounts for the increased effort involved in meeting execution time constraints when
developing software. It is determined by estimating the percentage of system execution time that
will be used by the software under development.

TIME < 50% of available time 70% 85% 95%
Weight 1.0 1.11 1.31 1.67

Figure 2.16

Main Storage Constraint (STOR)

The STOR represents the percentage of total system storage resources consumed by the software
system.

STOR < 50% 70% 85% 95%
Weight 1.0 1.06 1.21 1.57

Figure 2.17

Platform Volatility (PVOL)

This factor accounts for possible change in the underlying platform that the software is being
developed on. The platform could include: hardware, operating system, device drivers, libraries,
compilers etc.

PVOL major: 12 mon
 minor: 1 mon

major: 6 mon
minor: 2 wk

major: 2 mon
minor: 1 wk

major: 2 wk
minor: 2 days

Weight 0.87 1.0 1.15 1.30
Figure 2.18

Analyst Capability (ACAP)

The factor accounts for the capability of the analysts designing the software. This us done by
estimating the percentile that the analyst team resides in. This ranking should consider factors such
as analysis and design ability, efficiency and thoroughness and the ability to communicate and
cooperate. This should not take into account experience which is rated using AEXP. An extremely
strong analyst team would be ranked in the 90th percentile.

ACAP 15th percentile 35th percentile 55th percentile 75th percentile 90th percentile
Weight 1.5 1.22 1.0 0.83 0.67

Figure 2.19

Page 25 of 88
Printed on 31/05/04

Programmer Capability (PCAP)

This reflects the capability level of the programmers. Programmers should be considered as a team
and not as individuals. Factors that should be considered include: efficiency and thoroughness and
ability to communicate and cooperate. Once again programmer experience should not be
considered here, as PEXP accounts for this.

PCAP 15th percentile 35th percentile 55th percentile 75th percentile 90th percentile
Weight 1.37 1.16 1.0 0.87 0.74

Figure 2.20

Personal Continuity (PCON)

This accounts for the turnover rate of the organisation in terms of the percentage of staff per year.

PCAP 48% / year 24% / year 12% / year 6% / year 3% / year
Weight 1.26 1.1 1.0 0.91 0.83

Figure 2.21

Applications Experience (AEXP)

This represents the level of experience the development team has with this type of application. It
ranges from very low (less than 2 months) to very high (over 6 years).

AEXP < 2 months 6 months 1 year 3 years 6 years
Weight 1.23 1.1 1.0 0.88 0.80

Figure 2.22

Platform Experience (PEXP)

This factor accounts for the level of experience that the development team has with the particular
platform. The platform should be the same set of hardware/software that was considered in the
PVOL factor. A team with less than 2 months experience would be rated very low, while a team
with over 6 years would receive a rating of very high.

PEXP < 2 months 6 months 1 year 3 years 6 years
Weight 1.26 1.12 1.0 0.88 0.80

Figure 2.23

Language and Tool Experience (LTEX)

This factor reflects the experience of the development team with the programming language and
software engineering tools. This includes but is not limited to : design and analysis tools, compilers,
libraries and configuration management software.

LTEX < 2 months 6 months 1 year 3 years 6 years
Weight 1.26 1.11 1.0 0.91 0.83

Figure 2.24

Page 26 of 88
Printed on 31/05/04

Software Tools (TOOL)

This factor accounts for the capability of the software development tools. The low end of the
spectrum is a simple code editor, with no integration with the system design tools. The upper end
on the other hand is where the software tools are closely linked with the software development
process

TOOL edit, code,
debug

simple front end,
back end CASE,
little integration

basic life cycle
tools, moderate
integration

strong, mature life
cycle tools, moderate
integration

strong, mature
pro-active life
cycle tools, well
integrated with
development
process

Weight 1.2 1.1 1.0 0.88 0.75
Figure 2.25

Multi-site Development (SITE)

This reflects the extra effort involved with multi site developments, and the effect of restrictied
communication channels. It is found by calculating the average of the collocation and
communication factors.

The weight for the SITE factor should be taken as the average of the collocation and
communication factors.

Collocation International Multi-city and
multi -
company

Multi-city or
multi company

Same city or
metro area

Same building Fully
collocation

Communications Some phone,
mail

Individual
phone, Fax

Narrow-band
email

Wide-band
electronic
comms.

Wide-band elect
comms.
occasional
video conf.

Interactive
multimedia

Weights 1.24 1.1 1.0 0.92 0.85 0.79
Figure 2.26

Product Complexity Driver (CPLX)

The product complexity driver measures the inherent complexity built into the product. This is
divided up into five areas: control operations, computation operations, device dependant operations,
data management operations and user interface.

The CPLX factor is the average of the five areas.

Page 27 of 88
Printed on 31/05/04

Very Low Low Nominal High Very High Extremely
High

Control
Operations

Straight code
with few
nested blocks.
Simple module
composition

Straightforwar
d nesting

Mostly simple
nesting. Some
intermodule
control. Simple
callbacks or
message
passing.

Highly nested
programming
operators.
Queue and
stack control.
Distributed
programming

Reentrant and
recursive
coding. Task
synchronizatio
n and complex
callbacks.

Multiple
resource
scheduling
with
dynamically
changing
priorities.

Computational
Operations

Simple
expressions eg.
A = B + C*(D-
E)

Moderate
expressions eg.
D=SQRT(B**
2-4*A*C)

Standard math
and statistical
routings. Basic
matrix / vector
operations

Basic
numerical
analysis.
Ordinary
differential
equations.
Basic
truncation,
roundoff
concerns

Difficult but
structured
numerical
analysis, partial
differential
equations.
Simple
parallelization

Difficult and
unstructured
analysis.
Analysis of
noisy,
stochastic
data. Complex
parallelization

Device-
dependent
Operations

Simple read,
write
statements with
simple formats

No knowledge
of particular
device needed.
IO done at
GET/PUT
level

I/O includes
device
selection,
status and error
checking

Operations at
physical IO
level (seeks,
reads, etc).
Optimised IO
overlap

Routines for
interrupt
diagnostics,
servicing and
masking.
Performance
intensive
embedded
systems

Device timing
dependant
coding.
Performance
critical
embedded
systems

Data
Management
Operations

Simple arrays
in main
memory.
Simple
database
queries and
updates

Single file sub-
setting with no
data structure
changes.
Moderately
complex
queries and
updates.

Multi-file input
and single file
output. Simple
structural
changes and
edits. Complex
DB queries and
updates

Simple triggers
archived by
data stream
contents.
Complex data
restructuring

Distributed
database
coordination.
Complex
triggers. Search
optimisation.

Highly
coupled
dynamic
relational and
object object
structures.

UI
Management
Operations

Simple input
forms and
report
generators

Use of simple
GUI builders

Simple use of
widget set

Widget set
development
and extension.
Simple voice
I/O,
multimedia

Moderately
complex
2D/3D,
dynamic
graphics and/or
multimedia

Complex
multimedia
and/or virtual
reality

Weights 0.75 0.88 1.0 1.15 1.30 1.49
Figure 2.27

Calculation of Product Multiplier (M)

Calculate the product of the sixteen cost drivers, and enter the result into the field [B6].

Page 28 of 88
Printed on 31/05/04

2.2.4 Expected Effort

Calculate the estimate of the amount of effort required for the product, using the following formula:

Effort = A x [B3] [B5] x [B6]

where [B3] is size in kilo lines of code, from either section 3.2.1. The value of A should be
determined from past projects. In the case where no past data is available, a value of 3.0 should be
used.

2.2.5 Confidence Interval

The COCOMO II model includes a sample of projects, where the size estimates are compared to
the final size values, at various stages during project development.

Figure 2.28

From the above graph and the COCOMO II paper by Boehm (1995), the following optimistic and
pessimistic values are obtained. This represents one standard deviation about the mean (E) which,
in this case, is the estimate of the effort provided by the COCOMO II algorithm.

Stage Optimistic Pessimistic
Concept Document Completed 0.5 E 2.0 E
Requirements Specification Complete 0.67 E 1.5 E
Architecture Design Complete 0.80 E 1.25 E
Detailed Design Complete 0.9 E 1.1 E

Figure 2.29

Note that the distribution of projects is non-symmetrical. Although there is an equal chance of a
project finishing before or after the mean, the overruns and under-runs will not always balance out.
The deviation from the mean for projects that finish early will in general be a lot smaller than the
deviation for projects that finish late. This is reflected in the values in Figure 2.9.

Page 29 of 88
Printed on 31/05/04

An interval of one standard deviation either side of the mean gives an approximately 68%
confidence interval. In order to determine a 95% confidence interval (or an interval to an arbitrary
level of confidence for that matter), the procedure below should be followed.

Choose a value γ, which is the level of confidence required (ie. a value of 0.95 means we are 95%
certain that the actual time taken will reside within our confidence interval). Note that a confidence
of 100% cannot be obtained, and so setting γ to 1 is not possible, We then calculate the area under
the tail of the normal curve using the following formula:

α = (1 - γ) / 2

Using the example above with γ = 0.95, α = 0.025.

Next, the values of zL and zH must be calculated. This gives the cutoff values for the selected
confidence interval for a standardised normal distribution. These values are calculated from the
table of cumulative probabilities for the normal distribution given in Appendix A. zL is found by
locating the value of α in the table, and noting for what value of z it occurs at. ZH is found by
locating the value 1-α in the table, and again noting for what value of z this occurs at. zL should
always be less than 0, while zH should be greater than 0.

For the example of α = 0.025, we find zL = -1.96 and zH = 1.96.

Finally we calculate the optimistic and pessimistic estimates for the effort using the following
formula:

EO = E (1 + σL . zL)

EP = E (1+ σH . zH)

Where σL and σH are chosen from Figure 2.30, depending on what stage the project is at.

Stage σσσσL σσσσH

Concept Document
Completed

0.5 1.0

Requirements
Specification Complete

0.33 0.5

Architecture Design
Complete

0.2 0.25

Detailed Design Complete 0.1 0.1
Figure 2.30

Note that for high confidence factors (such as more than 95%) and early stages, the value for EO

can become less than 0. Obviously this is not possible and the large confidence interval represents
the high degree of uncertainty inherent in projects during the early stages. For this reason, it is
recommended that the confidence factor (γ) be kept to less than 70% until the requirement
specifications are complete.

Page 30 of 88
Printed on 31/05/04

2.2.6 Duration

Convert the expected effort, pessimistic effort EP and optimistic effort EO to duration using the
following formula:

Duration = A x E 0.33 + 0.2 x ([B5] - 1.01)

Again the value of A is organisation specific. If no past data exists, use a value of 3.0.

These three values are then used in section 2.5, along with the results from the other two processes,
to produce a final estimate.

Page 31 of 88
Printed on 31/05/04

2.3 PERT Estimation User Guide

1. Divide the project into Estimable Work Units (EWU). These are like modules. They should
be small and self-contained, with clear objectives and deliverables.

2. For each EWU, one or more Individual Estimation Forms must be filled out. Each estimator
can only fill out one form. The more estimators, the better - anyone with at least basic
estimation knowledge can contribute. A description for each field on the form is as follows:

• Work Unit Name

The name of the work unit this estimation is for.
• Estimator Name

The estimator’s name, so each estimation can be traced back to their original
estimator.

• Team Size
Number of people that will be working on this work unit.

• Realistic Estimate (R)

An estimate for the duration of this work unit, in days, if it progresses normally.
• Optimistic Estimate (O)

An estimate for the duration of this work, in days, if it progresses well.
• Pessimistic Estimate (P)

An estimate for the duration of this work, in days, if it progresses poorly.
3. After collecting all Individual Estimator Forms, record all estimates in the Work Unit

Estimate Forms. There must be one of these forms for each EWU. A description of each
field in the form is below:

• Work Unit Name

The name of the Estimable Work Unit this form is for.
• Estimator Name

Name of the estimator, who’s estimates will be filled out on the same row.
• Optimistic (O)

Estimator’s optimistic estimate value.
• Realistic (R)

Estimator’s realistic estimate value.
• Pessimistic (P)

Estimator’s pessimistic estimate value.
• Unadjusted, Weighted Estimate (uE)

The weighted average of the optimistic, realistic, and pessimistic estimates. It is
calculated with the following formula:

6

PR4O
Eu

++=

• Unadjusted Variance (2uσ)

The variance between the optimistic and pessimistic estimates. It is calculated with:
2

2
u 6

OP







 −=σ

Page 32 of 88
Printed on 31/05/04

• Estimator Confidence (K)

A modifier used on the final estimate. This value is based on the estimator’s
previous estimates. See the Estimator History Form for details on how its value is
found. If there is no existing estimation history, then just use the value 1.
A value of one is for accurate estimators (their estimates will be unmodified).
Values higher than one are for optimistic estimators (tend to be below actual
durations). Lower than one is for pessimistic estimators (tend to be higher than
actual durations). New estimators start with a confidence value of 1, which means
their estimates will be unmodified.
The confidence can be calculated from previous estimation history, ideally recorded
on the Estimator History Form.

• Adjusted, Weighted Estimate (aE)

The Estimator Confidence is applied onto the Weighted, Unadjusted Estimate to find
this value:

ua EKE ×=
• Adjusted Variance (2

aσ)

The Estimator Confidence is applied onto the Unadjusted Variance to find this
value. The confidence needs to be squared, because the variance is also a squared
value:

22
u

2
a K×σ=σ

• Average, Adjusted Estimate (vE)

The average of all adjusted estimates calculated:

n

E
E a

v
∑=

• Average, Adjusted Variance (2vσ)

The average of all adjusted variances calculated:

n

2
a2

v
∑σ

=σ

4. After all Average, Adjusted Estimates, and Average, Adjusted Variances have been
collected, record them down in the Project Estimate Form. This form consists of the
following fields:

• Work Unit Name

The name of the Estimable Work Unit, which will have its estimate and variance
recorded on the same row.

• Average, Adjusted Estimate (vE)

The value of Average, Adjusted Estimate for the work unit specified on the same
row.

• Average, Adjusted Variance (2vσ)

The value of Average, Adjusted Variance for the work unit specified on the same
row.

• Total Project Variance (E)

The sum of all Average, Adjusted Estimates. It is the final estimate of the project:

Page 33 of 88
Printed on 31/05/04

∑= vEE

• Total Project Variance (2σ)

The sum of all Average, Adjusted Variances. It is the final variance of the project:

∑= 22
vσσ

• Estimate Standard Deviation
The standard deviation of the estimates:

2σσ =

5. Finally calculate the values of optimistic, expected and pessimistic duration for the project. We
assume that the duration probability of the project has a normal distribution, and take 2 standard
deviation on either side of the expected value to give us a 95% confidence interval:

Duration optimistic = σ2−E
Duration expected =E
Duration pessimistic = σ2+E

Convert the durations from Days to Months, by dividing them by the average number of
working days per month for your organisation. Typically this is about 17 days per month.

Page 34 of 88
Printed on 31/05/04

2.4 Risk Management

This section deals with identifying risks associated with the project, and then analysing them to
produce a measurement for the amount of risk associated with the project.

• Identify the risks
• Assign probabilities and effort values to the risks
• Calculate Risk Exposure (RE) for each risk
• Compute the Mean Risk Exposure (MRE)

2.4.1 Identify the Risks

This can be performed using a brainstorming session with stakeholders from the project. Risks from
each of the five sections (technology, people, organisational, tools and requirements) should be
considered. Once the risks are identified, they should be entered into Figure 3.7 in section 3.4. Note
that only risks that are being borne by the organisation are entered. If risks have been written out of
contracts, or passed on to sub contractors, they should not be examined in this case. In other words,
it is expected that a risk analysis has been performed, and the critical risks have already been
mitigated.

The five areas to consider when identifying risks are from Sommerville (2001):

Technology Risks - Risks that are derived from the software or hardware technologies that
are used as components of the system being developed.

eg. A database that cannot perform as many transactions as required.

People Risks - Risks that are associated with the people developing the product.

eg. The lead programmer leaving the team.

Organisational - Risks which derive from the organisational environment in which the
software is being developed.

eg. The organisation is restructured so that a new management team is responsible for the
project.

Tools - Risks that derive from the CASE tools and other support software used to develop
the system.

eg. The CASE tools have limitations that were not known at the beginning of the project.

Requirements - Risks that derive from changes to the customer requirements and the process
of managing requirements change.

eg. The client changes the requirements to include new features.

Note that the sixth area proposed by Sommerville, estimation, has been omitted. For this tool, the
level of uncertainty in the estimates is reflected in the confidence interval, rather than the risk
exposure.

Page 35 of 88
Printed on 31/05/04

 2.4.2 Assign Values

Each risk identified in step one should now be assigned a probability of occurring (between 0 and
100%). Figure 2.30 should be used as a guide, though the probabilities do not have to be the exactly
values as given in the table.

Very Low Low Moderate High Very High Extremely
High

5% 20% 40% 65% 75% 90%
Figure 2.30. Guide to calculating the probability of a risk occurring.

Next, for each risk, the required additional effort that would be needed if the risk occurred is
estimated (ie. the impact the risk would have on the required effort). This is in the form of person-
days. The values for effort should be entered into Figure 3.7.

For example, a risk may be that a library that the software will use has not been used in the
organisation before. We estimate that there is a 5% chance that the library contains serious errors,
and if this occurs an additional 3 person days will be required to resolve these issues.

When assigning probabilities to risks, it is important to note that some risks may not be
independent. This creates a problem in risk management as the risk exposure values can only be
added if the individual risks are independent. This is a known problem with risk analysis, and as yet
no simple methods have been devised to combat it. It is recommended that the estimator only
consider independent events when using this risk management technique.

2.4.3 Risk Exposure

Next the Risk Exposure (RE) for each risk should be calculated using the formula given below:

Risk Exposure = Probability x Effort

This should also be entered into figure 3.7.

2.4.4 Expected Risk Exposure (ERE)

The expected risk exposure is calculated by summing each individual risk exposure and the final
value is entered into the field marked sum. This represents the expected (average) overrun for the
project and is used in section 2.5.

Page 36 of 88
Printed on 31/05/04

2.5 Process Combination User Guide

Once an estimation of optimistic, expected and pessimistic duration have been obtained from each
of the three method (ie Feature Point Analysis, COCOMO II, and PERT), these are combined using
Section 3.5.

The weighs for each method are initially 1.0, and are adjusted by the PIR.

Compare the values in the second column of Figure 3.8, which are the estimated excepted duration
for the project. If any of these largely disagrees with the other two, go back and review the process
of obtaining that estimation. Start by using the checklists in section 5 of the estimation tool, and do
a thorough review of that particular estimation processes. If you still do not obtain a value close to
the other estimation methods, consider reviewing the other methods of estimation. If this is also
not helpful, leave the outlying value out of the following equations when combining the durations.

The final values for the optimistic, expected and pessimistic duration are then calculated using the
following formula:

Final Optimistic Duration =
321

)33()22()11(

AWAWAW

AWOAWOAWO

++
×+×+×

Final Expected Duration =
321

)33()22()11(

AWAWAW

AWEAWEAWE

++
×+×+×

Final Pessimistic Duration =
321

)33()22()11(

AWAWAW

AWPAWPAWP

++
×+×+×

Finally copy the Expected Risk Exposure value calculated in section 3.4 into the field marked ERE.
The ERE represents the expected overrun in required effort for the project. Note that this
measurement does not indicate a duration

Page 37 of 88
Printed on 31/05/04

3. Templates

3.1 Feature Point Analysis Templates

3.1.1 Feature Point Count

Figure 3.1

Estimator’s Comments:

Component Complexity

Low Average High Total

Algorithms ____ × 2 = ____ ____ × 3 = ____ ____ × 5 = ____

External Inputs ____ × 3 = ____ ____ × 4 = ____ ____ × 6 = ____

External Outputs ____ × 4 = ____ ____ × 5 = ____ ___ _ × 7 = ____

External Inquiries ____ × 3 = ____ ____ × 4 = ____ _ ___ × 6 = ____

Internal Logic Files ____ × 5 = ____ ____ × 7 = ___ _ ____ × 10 = ____

External Interface Files ____ × 5 = ____ ____ × 7 = ____ ____ × 10 = ____

Total Unadjusted
Feature Points
[A1]

Complexity
Multiplier
[A2]

Total Adjusted
Feature Points
[A3]

Page 38 of 88
Printed on 31/05/04

3.1.2 Complexity Multiplier

Problem Complexity: _____

1) Simple algorithms and simple calculations
2) Majority of simple algorithms and calculations
3) Algorithms and calculations of average complexity
4) Some difficult or complex algorithms
5) Many difficult algorithms and complex calculations

Data Complexity: _____

1) Simple data with few variables
2) Numerous variables, but simple data relationships
3) Multiple files, fields, and data intersections
4) Complex file structures and data intersections
5) Very complex file structures and data intersections

Sum of Problem and Data
Complexity

2 3 4 5 6 7 8 9 10

Complexity Multiplier 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Figure 3.2

Complexity Multiplier [A2] = _____

Estimator’s Comments:

Page 39 of 88
Printed on 31/05/04

3.1.3 Effort

Hours Per Month (HPM) = ___________ (Default is 85)

MMRE = ___________

R(C) = _____________________________________ (Equation)

Effort optimistic
HPM

ARMMREA
1

)88.0]3([)1(88.0]3[×××−××=

 = ___________ Person Months

Effort expected
HPM

ARA
1

])3([]3[××=

 = ___________ Person Months

Effort pessimistic
HPM

ARMMREA
1

)12.1]3([)1(12.1]3[×××+××=

 = ___________ Person Months

Note: Refer to the PIR section 6.1 for the function of R, and value of MMRE

3.1.4 Duration

Duration = a Total Effort b

Duration optimistic = a (Effort optimistic)
b = _______ Months

Duration expected = a (Effort expected)
b = _______ Months

Duration pessimistic = a (Effort pessimistic)
b = _______ Months

Note: See section 2.1.5 for selecting appropriate values of a and b

Estimator’s Comments:

Page 40 of 88
Printed on 31/05/04

3.2 COCOMO II - Templates

3.2.1 Estimating Size

 To calculate system size, either use unadjusted function points (section 2.2.1.1) , OR
estimate the lines of code on a per module basis (section 2.2.1.2)

Using Unadjusted Feature Points

Unadjusted function point count from Function Point Analysis = _____________ [B1]

Equivalent SLOC = __________________ [B2]

Size of System in KSLOC : ([B2] / 1000) = _________________________ [B3]

Estimator’s Comments:

Page 41 of 88
Printed on 31/05/04

Direct Estimation

 All values should be entered in kilo lines of source code (KSLOC)

Module Person A Person B Person C Person D Person E Average

Figure 3.3 Initial estimates for module size

Page 42 of 88
Printed on 31/05/04

Module Person A Person B Person C Person D Person E Average

Total [B3]
Figure 3.4 Revised estimates for module size

Page 43 of 88
Printed on 31/05/04

 3.2.2 Scale Factors

 Factor Value
 PREC
 FLEX
 RESL
 TEAM
 PMAT

Sum [B4]
Figure 3.5

β = 1.01 + 0.01 x [B4]

Value of exponent β = ________________ [B5]

Estimator’s Comments:

Page 44 of 88
Printed on 31/05/04

3.2.3 Cost Drivers

Driver Value
RELY
DATA
DOCU
RUSE
TIME
STOR
PVOL
ACAP
PCAP
PCON
AEXP
PEXP
LTEX
TOOL
SITE
CPLX

Product [B6]
Figure 3.6

Estimator’s Comments:

Page 45 of 88
Printed on 31/05/04

3.2.4 Expected Effort

Value of A = _____________ (from PIR or default to 3.0)

Effort = E = A x [B3] [B5] x [B6]

Effort (Person Months) Estimate = ___________ [B7]

3.2.5 Confidence Interval

Required Confidence Level γ = _________________

Area under tail of normal curve: α = (1-γ) /2 = _________________

Lower cutoff zL = ________________

Upper cutoff zH = ________________

Optimistic Effort EO = __________ [B8]

Pessimistic Effort EP = __________ [B9]

3.2.6 Duration

Duration = A x E 0.33 + 0.2 x ([B5] - 1.01)

Where E is either [B8], [B7] or [B9] for optimistic, expected and pessimistic duration respectively.

Optimistic Duration Estimate: ____________________ (months)

Expected Duration Estimate: ____________________ (months)

Pessimistic Duration Estimate: ____________________ (months)

Estimator’s Comments:

Page 46 of 88
Printed on 31/05/04

3.3 PERT Estimation Templates

3.3.1 Individual Estimator Form

Work Unit Name

Estimator Name

Team Size

Estimates (Duration in Days)

Optimistic (O) Realistic (R) Pessimistic (P)

Page 47 of 88
Printed on 31/05/04

3.3.2 Work Unit Estimate Form

Work Unit Name
E

st
im

at
or

 N
am

e

O
pt

im
is

tic

R
ea

lis
tic

P
es

si
m

is
tic

U
na

dj
us

te
d,

 W
ei

gh
te

d
E

st
im

at
e

V
ar

ia
nc

e

E
st

im
at

or
 C

on
fid

en
ce

A
dj

us
te

d
E

st
im

at
e

A
dj

us
te

d
V

ar
ia

nc
e

(O) (R) (P) (uE) (2
uσ) (K) (aE) (2

aσ)

Average, Adjusted Estimate (vE)

Average, Adjusted Variance (2vσ)

Page 48 of 88
Printed on 31/05/04

3.3.3 Project Estimate Form

Work Unit Name

Average, Adjusted Estimate
(vE)

Average, Adjusted
Variance (2

vσ)

Total Project Estimate (E)

Total Project Variance (2σ)

Estimate Standard Deviation (σ)

Duration optimistic = σ2−E = ___________ Days = ___________ Months

Duration expected =E = ___________ Days = ___________ Months

Duration pessimistic = σ2+E = ___________ Days = ___________ Months

Page 49 of 88
Printed on 31/05/04

3.4 Risk Management Templates

Risk Probability Effort RE = Probability x
Effort

ERE
Figure 3.7 Risk Management Template

Page 50 of 88
Printed on 31/05/04

3.5 Process Combination Templates

Revision Number

Performed By

on

Method Optimistic
Estimation of
Duration

Expected
Duration

Pessimistic
Estimation of
Duration

Accuracy
Weight

Feature Point
Analysis

[O1] = [E1] = [P1] = [AW1] =

COCOMO II
Analysis

[O2] = [E2] = [P2] = [AW2] =

PERT Analysis [O3] = [E3] = [P3] = [AW3] =
Figure 3.8

O = Final Optimistic Duration =
321

)33()22()11(

AWAWAW

AWOAWOAWO

++
×+×+×

 = _______

E = Final Expected Duration =
321

)33()22()11(

AWAWAW

AWEAWEAWE

++
×+×+×

 = _______

P = Final Pessimistic Duration =
321

)33()22()11(

AWAWAW

AWPAWPAWP

++
×+×+×

 = _______

ERE = Expected Risk Exposure = ____________________________ (person –days)

Next revision due in ______________ months

Estimator’s Comments:

Page 51 of 88
Printed on 31/05/04

4.0 Estimation Review Triggers

As mentioned in section 1.5, the estimation process should be performed regularly throughout a
project’s life, so that the estimates are always based on up to date information. This will lead to a
set of revisions in the estimation process, where each revision should produce an estimate with a
higher degree of accuracy than the last.

Performing a revision is identical to performing the initial estimation. Copies should be made of the
templates (section 3) and the checklists (section 5) and then completed as per the user guide. When
the estimation process is complete, a different individual should user the checklists to identify any
problems with the estimation.

The following events should be used to trigger an estimation review.

Problem Changes
This is the most common cause to trigger a new revision of the estimation. Whenever information
about the problem changes (ie. through a change to the requirements specification), a new revision
should be prepared. This will ensure that all stakeholders are aware of the effect that the changes
have had on the estimate, and can often dispel the “just a few small changes” myth.

Resources Change
Any change in the resources available to a project should trigger a new revision. For example this
could occur when:

• Personnel join or leave
• The development platform changes
• Specific resources become unavailable (ie testing hardware etc.)

Milestones
The completion of a project milestone should trigger a new revision. Generally at the completion of
a milestone, new information about the project will become available (due to decisions having to be
made in order to meet the milestone). This will lead to an increased accuracy of the next revision.

Elapsed Time
The “catch all” trigger. If no revision has been performed within a specified period of time, this
should trigger a review. The period of time to perform the next revision should be set once a
revision has been completed. The amount of time is dependant upon the organisation and project,
though for any reasonable sized project (more than 6 months duration), the authors suggest
performed at least 4 revisions over the lifetime of the project, or at least every two to three months.

Page 52 of 88
Printed on 31/05/04

5.0 Checklists

These checklists should be completed at the end of each estimation by a person other than those
who performed in initial estimation. They assist in identifying errors that may have been made
during the estimation process. Once complete, they should be signed, and stored with the completed
estimation templates for future reference.

5.1 Feature Point Analysis Checklist

Item Check
The total number of each component type (i.e. algorithms, external inputs, external
outputs, external inquiries, internal logic files, and external interfaces files) has been
determined.

The components are classified as being of low, medium or high complexity according
to guidelines in section 2.1.3 . Appropriate values are put in figure 3.1 .

The raw feature points for the components are summed up correctly on the right hand
side of Figure 3.1, to give Total Unadjusted Feature Point Count [A1].

In section 3.1.2, an appropriate value between 1 and 5 is chosen for Problem
Complexity and Data Complexity, and written in the provided space.

The sum of the values for Problem and Data Complexities are used to pick the correct
factor from Complexity Table in Figure 3.2. This factor is written back into Figure
3.1.1 [A2]

The unadjusted feature point count [A1] is correctly multiplied with the complexity
multiplier [A2], to produce the Total Adjusted Feature Point Count [A3].

In section 3.1.3 a value for Hours Per Month (HPM) for the organisation is picked

In section 3.13 the value of MMRE, and the function R(C) are correctly stated, based
on the PIR for feature points (section 6.1)

In section 3.13 values of optimistic, expected, and pessimistic duration are correctly
calculated using the provided formulae and parameters.

Durations are correctly derived from effort values in section 3.1.4

Checked by

Date

Signature

Page 53 of 88
Printed on 31/05/04

5.2 COCOMO II Checklist

Item Check
Ensure that the size has been correctly estimated by using unadjusted feature
points (section 2.2.1.1). Ensure they have been converted to KSLOC correctly,
pay particular attention to the division by a factor of 1000 (ie. KSLOC rather than
LOSC)
OR
If the size has been estimated directly, ensure that the process of estimation has
been carried out as specified in section 2.2.1.2. Both Figure 3.3 and 3.4 should
have been completed, using Delphi techniques. Ensure that the unit calculated for
B3 are in thousands of lines of source code.
The five scaling factors (PREC, FLEX, RESL, TEAM and PMAT) have all been
calculated. Decisions have been accounted for.
The exponent β has been calculated correctly
Values have been assigned to the 17 cost drivers. Reasons have been given for
any factors that were deemed not relevant. All decisions have been justified
The expected effort has been calculated correctly
The confidence factor γ has been set, a value for α calculated, the values for zL

and zH obtained and finally values for EP and EO calculated.
The expected, pessimistic and optimistic values for duration have been
calculated.

Checked by

Date

Signature

Page 54 of 88
Printed on 31/05/04

5.3 PERT Estimation Checklist

Individual Estimator Forms

Item Check
Estimable Work Units do not share any common goals. Each unit should be its
own self-contained piece of work.

Estimable Work Units are as small as feasibly possible. Smaller units are easier
to estimate for.

Each estimator’s name is filled out, so all individual estimations can be accounted
for.

No estimators have the same names. If there are any, then they should be
differentiated, somehow; either by including their middle names, or appending a
number to each (i.e. “John Smith #1”).
The realistic (R), optimistic (O), and pessimistic (P) estimates are correct,
relative to each other. Pessimistic should be the highest, followed by realistic, and
optimistic should be the lowest. That is, the following condition should hold true:

ORP >>

Work Unit Estimate Forms

Item Check
All the individual estimators have made their estimates for the work unit.
Otherwise estimations will need to be re-processed from this step onwards, if
there are any more additions or modifications to the estimates.

The Work Unit name has been filled out and is correct. All the individual
estimates put into this form must have matching Work Unit names, too.

The estimator’s name and their corresponding estimates have been transferred
properly from their individual form to the Work Unit Estimate form. The values
should match.
The Unadjusted, Weighted Estimates, and Variances have been calculated
correctly.

The value for the Estimator Confidence is the latest one used. Make sure all
estimation history is recorded and up-to-date, and that the Estimator Confidence
value used, is based on those values.
The Adjusted Estimates, and Adjusted Variances have been calculated correctly.

The Average, Adjusted Estimates and Variances have been added up and
calculated correctly.

Page 55 of 88
Printed on 31/05/04

Project Estimate Form

Item Check
All Work Unit Estimate forms have been filled out for all Work Units

The values from each individual Work Unit Form have been copied into the
Project Estimate form correctly

The Total Project Estimate and Total Project Variance have been added up
correctly.

Estimator History Form (PIR)

Item Check
The Estimator Name is filled out correctly with a valid name.

There are no duplicate forms for the same estimator. Strictly one form per
estimator.

Work Unit Names have been copied over correctly.

Values for each Unadjusted, Weighted Estimate (uE), and Actual Duration (A),

corresponds correctly with the Work Unit Name, given on the same row.

Difference values have been calculated correctly

All the latest estimates and actual durations have been recorded.

The Estimator Confidence (K) is based on all the latest values given in the form,
and has also been calculated correctly.

Checked by

Date

Signature

Page 56 of 88
Printed on 31/05/04

5.4 Risk Management Checklist

Item Check
Ensure that all five areas have been considered when identifying risks

Check that reasonable values have been assigned to the risk probabilities

Check that reasonable values have been assigned to the risk impacts (effort)

Check that all risk exposures have been correctly calculated.

Check that the expected risk exposure has been correctly calculated.

Checked by

Date

Signature

Page 57 of 88
Printed on 31/05/04

5.5 Process Combination Checklist

Item Check
All relevant values have been copied correctly into Figure 3.8

Any outliers have been identified, and have triggered a review of the appropriate
method.
The final values for the optimistic, expected and pessimistic duration have been
calculated correctly

Checked by

Date

Signature

Page 58 of 88
Printed on 31/05/04

6. Project Database and Post-Implementation Review

This section deals with tuning the estimation tool to organisation. At the completion of each
project, relevant information should be entered into the databases, and a post implementation
review (PIR) conducted. This adjusts a number of values used throughout the estimation process,
which will tailor the tool for the organisation, and increase the accuracy of subsequent estimates.
As previously mentioned, the feature points and COCOMO processes depend heavily on past data
being available and so the PIR plays a critical part in the estimation process. Don’t leave it out!

6.1 Feature Point Database and PIR

This section develops a function to convert the number of feature points into a value for effort.

The following information will be needed for each project:

• Total Actual Effort (person hours)
• Final Feature Point Count

The information should be entered into the second and third columns of Figure 6.1. The first
column should contain the name (or identifier) of the project.

Project
Name

Total Actual
Effort in
Person Hours
(E)

Final Feature
Point Count
(C)

Actual Hours
per Feature
Point (R) =
(E)/(C)

Predicted
value of
Hours per
Feature Point
(R’)

Magnitude of
Relative Error
of R (MRE)

MMRE

Figure 6.1

Page 59 of 88
Printed on 31/05/04

Next, for each project calculate the number of hours per feature point (R) , given by:

R = E / C

And enter the result into column four.

The value of R is a function of C. ie.

)()(CfCR =

Solve for f(C) by plotting final hours per feature point (R), against final feature point count (C),
from the above table and drawing a best fit graph or by using a suitable software package. We

recommend an exponential model of the form
kCaeCf =)(where a and k are constants, or a

power function of the form
baCCf =)(where a and b are constants.

Now that the function f(C) has been found, calculate the value of R` for each project. In the case
where more than one project exists in the database, the value of R` must be re-calculated using the
latest equation for f(C) for each project.

Calculate the Magnitude of Relative Error of R in the above table using the following equation:

R

RR
MRE

−
=

'

To calculate the Mean Magnitude of Relative Error, simply take the mean of the MREs for the
previous projects:

∑
=

=
n

i
iMRE

n
MMRE

1

1

Where n is the number of previous projects, and MREi is the Magnitude or Relative Error for the ith

project.

The value of MMRE is used in the feature point estimation, to provide a confidence interval.

Page 60 of 88
Printed on 31/05/04

6.2 COCOMO II Database and PIR

The COCOMO II PIR consists of two parts:

• Revise the feature point to KSLOC factors
• Revise the value of A

The first part will only have to be performed for projects that estimated size from the number of
feature points. If the size for the COCOMO model was estimated directly, proceed to the second
part of the COCOMO PIR.

6.2.1 Feature Point to KSLOC factor

The following information will be required:

• Final Feature Point count (C)
• Actual size in KSLOC (S).

 It is imperative that the standards agreed for counting lines of code are adhered to. A
checklist similar to that in Appendix B should be used as a guide on how to count lines of code.

Enter the values for C and S into Figure 6.2.

Project Language Final Feature Point
Count (C)

Actual KSLOC (S) KSLOC per FP
(F)

Average
Figure 6.2

Page 61 of 88
Printed on 31/05/04

To find the feature point to KSLOC factor (F) for a specific language, calculate the value for the
number of kilo lines of code per feature point using the formula given below and enter the result
into column five.

F = S / C

Take the average of the values in the fifth column (only for projects that used the required
language). This can be entered into Figure 2.6, and used as the new conversion factor.

If the values of S / C show a large variation, consider graphing the values of C and S / C, and fitting
a function to the graph. This will result in an equation of the form:

F(C) = f(C)

Where f(C) is an appropriate function (linear, exponential etc.). This is similar to the method used
for the Feature Point PIR (section 6.1)

6.2.2 Value of A

The following information will be required:

• Actual size in KSLOC (S)
• The β value used in the estimation
• The M value used in the estimation
• Total Actual Effort (person months)

Enter the values for S, β and M into Figure 6.3.

Next calculated the value of Ê, using the following formula:

Ê = Sβ x M

Calculate the value for A’ for each project, using the following formula:

A’ = E / E’

Finally, average to values of A’, to produce a new value A. This value can then be used in
subsequent estimates. It should lie somewhere between 2.5 and 3.0.

Page 62 of 88
Printed on 31/05/04

Project Actual
KSLOC (S)

Estimated
ββββ

Estimated
M

Ê Actual Effort
(E)

A’

Average (A)

Figure 6.3

Page 63 of 88
Printed on 31/05/04

6.3 PERT Database and PIR

As each Estimable Work Unit is finished, during the development of the project, each estimator
should record the actual time for completion. This is written in their own, personal Estimator
History Form. From a comparison between their own estimates, and the actual durations, their
Estimator Confidence value can be calculated. A description of each field in the Estimator History
Form is below:

• Estimator Name

The name of the estimator, who’s estimates will be recorded on the same form.
• Work Unit Name

Name of the work unit, which will be described on the same row.
• Unadjusted, Weighted Estimate (uE)

The estimator’s Unadjusted, Weighted Estimate for the work unit given.
• Actual Duration (A)

The actual time it took for the given work unit to complete.
• Difference (D)

The difference between the estimator’s time and the actual time. Calculated with:

A

EA
D u−

=

• Estimator Confidence (K)

The final calculated value for the Estimator Confidence. It is basically based on the
average of all the differences. Find it with the following formula:

n

D
1K ∑+=

Page 64 of 88
Printed on 31/05/04

Estimator Name

Work Unit Name

Unadjusted,
Weighted

Estimate (uE)
Actual Duration

(A) Difference (D)

Figure 6.4

Estimator Confidence (K)

Page 65 of 88
Printed on 31/05/04

6.4 Process Combination Database and PIR

This section adjusts the weights for the individual models in the final combination formula.

The following information is required:

• Actual duration (D)
• Expected duration from Feature Points (E1)
• Expected duration from COCOMO (E2)
• Expected duration from PERT (E3)

Enter the values into Figure 6.5, along with the project name (or identifier).

Compute the accuracy of each process using the following formula:

AW =
|1| DE

D

−

and enter the values into Figure 6.5.

Finally calculate the geometric mean of the accuracies for each process using the following
formula:

Geometric Mean = Gn =
n

n

i
ix

1

1

)(∏
=

Where the values for xi are the individual cells in a particular column while n is the number of
values averaged. The final values for each weight can then be used in subsequent estimations.

Page 66 of 88
Printed on 31/05/04

Project
No.

Actual
Duration
(D)

Feature Point
Analysis
Estimation
(Expected)
[E1]

COCOMO II
Estimation
(Expected)

[E2]

PERT
Estimation
(Expected)

[E3]

Accuracy
weight of
E1 =
[AW1] =

|1| DE

D

−

Accuracy
weight of
E2 =
[AW2] =

|2| DE

D

−

Accuracy
weight of
E3 =
[AW3] =

|3| DE

D

−

Geometric Mean:
Figure 6.5

Page 67 of 88
Printed on 31/05/04

7.0 Estimation Example

7.1 Problem Statement

This section demonstrates the use of the tool to estimate a simple software project. The project
under question formed part of the assessment for the Algorithms 300 Course, during semester 1,
2004 at the University of Western Australia. A short description of the project and relevant details
is provided below.

The goal of the project was to provide an implementation of the Edmonds-Karp algorithm, which
would calculate the maximum flow through a network. The network consisted of vertices (nodes)
and edges as shown in Figure 7.1.

Figure 7.1

Each edge has a specific capacity (shown on the diagram above). Using the analogy of a water
network, the edges represent pipes, and the aim of the algorithm is to determine the maximum
amount of water (flow) that can be moved between the vertex marked s (the source) and the vertex
marked t (the sink). For more information on the Edmonds-Karp algorithm, consult a book such as
Introduction to Algorithms (Corman et al. 2001)

Data representing the network was supplied in a file in a form similar to that shown below:

4
0 2 5 0
0 0 0 4
0 0 0 3
0 0 0 0

The program was to have a graphical user interface, which would allow the user to load a data file,
view the network on screen, and then be able to run the algorithm and view the results. In addition,
a command line version was developed which simply printed the maximum flow.

Page 68 of 88
Printed on 31/05/04

7.2 Feature Points Example

7.2.1 Feature Point Count

The following feature points where identified:

Algorithms :
• Parsing
• Normalising the network
• Breath first search
• Finding the augmenting path
• Adjusting the flows and calculating residuals

External Inputs
• The data file

External Outputs
• Command line output
• GUI dialog
• GUI display (vertices and edges)

External Inquiries
(none)

Internal Logic files
• Vertex
• Edge
• Adjacency List
• Graph
• Queue

External Interface files
(none)

Next the complexity of each feature point was considered. All was ranted low except the graph
normalisation and the GUI display, which were rated average. This data was entered into Figure 7.2
and gave an unadjusted feature point count of 54.

Page 69 of 88
Printed on 31/05/04

Figure 7.2

Component Complexity

Low Average High Total

Algorithms __4_ × 2 = __8_ __1_ × 3 = __3_ __0_ × 5 = __0_ 11

External Inputs __1_ × 3 = __3_ __0_ × 4 = __0_ __0_ × 6 = __0_ 3

External Outputs __2_ × 4 = __8_ __1_ × 5 = __5_ __0 _ × 7 = __0_ 13

External Inquiries __0_ × 3 = __0_ __0_ × 4 = __0_ _ _0_ × 6 = __0_ 0

Internal Logic Files __4_ × 5 = _20_ __1_ × 7 = __7 _ __0_ × 10 = __0_ 27

External Interface Files __0_ × 5 = __0_ __0_ × 7 = __0_ __0_ × 10 = __0_ 0

Total Unadjusted
Feature Points
[A1]

54
Complexity
Multiplier
[A2]

1.0
Total Adjusted
Feature Points
[A3] 54

Page 70 of 88
Printed on 31/05/04

7.2.2 Complexity Multiplier

Problem Complexity: __3__

1) Simple algorithms and simple calculations
2) Majority of simple algorithms and calculations
3) Algorithms and calculations of average complexity
4) Some difficult or complex algorithms
5) Many difficult algorithms and complex calculations

Data Complexity: __3___

1) Simple data with few variables
2) Numerous variables, but simple data relationships
3) Multiple files, fields, and data intersections
4) Complex file structures and data intersections
5) Very complex file structures and data intersections

Sum of Problem and Data
Complexity

2 3 4 5 6 7 8 9 10

Complexity Multiplier 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Figure 7.3

Complexity Multiplier [A2] = __1.0___

Estimator’s Comments

The problem complexity was rated as 3 (average) and the data complexity was also rated as 3 (due
to the use of queues, lists and vectors).

This gave a sum or 6, which translates to a complexity multiplier of 1.0

The final adjusted feature point count is then 54.

Page 71 of 88
Printed on 31/05/04

7.2.3 Effort

Hours Per Month (HPM) = __85_______ (Default is 85)

MMRE = ___0________

R(C) = ___1.41 e 0.0003049 C________________________ (Equation)

Effort optimistic
HPM

ARMMREA
1

)88.0]3([)1(88.0]3[×××−××=

 = __0.80_________ Person Months

Effort expected
HPM

ARA
1

])3([]3[××=

 = __0.91________ Person Months

Effort pessimistic
HPM

ARMMREA
1

)12.1]3([)1(12.1]3[×××+××=

 = __1.02_________ Person Months

Note: Refer to the PIR section 6.1 for the function of R, and value of MMRE

7.2.4 Duration

Duration = a Total Effort b

Duration optimistic = a (Effort optimistic)
b = __2.3_____ Months

Duration expected = a (Effort expected)
b = __2.4_____ Months

Duration pessimistic = a (Effort pessimistic)
b = __2.5_____ Months

Note: See section 2.1.5 for selecting appropriate values of a and b

Estimator’s Comments:
Since no past data was available, we used the supplied formula for R(C) = 1.41 e 0.0003049 C. As
noted in the user guide, the lack of past data restricts the value of the confidence interval.

The system was determined to be organic, which gave a= 2.5 and b = 0.38.

Page 72 of 88
Printed on 31/05/04

7.3 COCOMO II - Templates

7.3.1 Estimating Size

 To calculate system size, either use unadjusted function points (section 2.2.1.1) , OR
estimate the lines of code on a per module basis (section 2.2.1.2)

Using Unadjusted Feature Points

Unadjusted function point count from Function Point Analysis = ___54________ [B1]

Equivalent SLOC = ___1242_______________ [B2]

Size of System in KSLOC : ([B2] / 1000) = _______1.242__________________ [B3]

Estimator’s Comments:
In this project we decided to estimate size from feature points, rather than perform direct estimation
for the number of lines of code. As it happened, the estimated value was 1.242 KSLOC which was
remarkably similar to the actual value for the project of 1.228 KSLOC. This completely changed
the group’s faith in estimation tools!

Page 73 of 88
Printed on 31/05/04

7.3.2 Scale Factors

 Factor Value
 PREC 2
 FLEX 1
 RESL 5
 TEAM 2
 PMAT 4

Sum 14 [B4]
Figure 7.4

β = 1.01 + 0.01 x [B4]

Value of exponent β = ____1.14____________ [B5]

Estimator’s Comments:

PREC – this type of project was generally familiar to the group. All members has past experience
in Java and two of the three members had experience in Java GUIs.

FLEX – The team had a fair degree of flexibility in the development process. The main objectives
were specified, but the team had to have bi-weekly meetings and complete minute sheets.

RESL – no risk resolution was in place.

TEAM – Interactions in the team were largely co-operative. Although this was a new team which
had no previous experience working together.

PMAT – No software improvement process was in place.

Page 74 of 88
Printed on 31/05/04

7.3.3 Cost Drivers

Driver Value
RELY 0.88
DATA 0.93
DOCU 1
RUSE 1
TIME 1
STOR 1
PVOL 0.87
ACAP 1
PCAP 0.87
PCON 1
AEXP 1
PEXP 0.88
LTEX 0.91
TOOL 1.2
SITE 0.85
CPLX 0.952

Product [B6] 0.4816
Figure 7.5

Estimator’s Comments:
RELY – The software was not mission critical, errors while no desired did not pose a large risk
DATA – The size of the data files was estimated to be at most a few hundred kilobytes. This meant
the D/P factor was less than 1.
DOCU – The amount of documentation required was the right size for the project. All methods
were required to have Javadoc, and a short user manual was to be produced.
RUSE – while components were not expected to be reused, interfaces between modules were well
defined and the application design was modular.
TIME – execution time was not an issue
STOR – storage was not an issue
PVOL – the platform was well defined (Java 1.4) and stable
ACAP – the analyst capability was estimated to be in the 55 to 75th percentile.
PCAP – the programmer capability was estimated to be in the 75th percentile
PCON – personnel turnover was not a factor (set to 1)
AEXP – application experience was approximately 1 year
PXEP – platform experience was between 2 and 3 years
LTEX – language and tool experience was also between 2 and 3 years
TOOL – No CASE tools were used.
SITE – The project team were in the same building for the majority of the project.
CPLX – The average of the CMPX factors came to 0.952

Control – Nominal
Computational – Nominal
Device dependant – Low
Data Management – Low
UI Management – Nominal

Page 75 of 88
Printed on 31/05/04

7.3.4 Expected Effort

Value of A = _3.0____________ (from PIR or default to 3.0)

Effort = E = A x [B3] [B5] x [B6]

Effort (Person Months) Estimate = _1.84__________ [B7]

7.3.5 Confidence Interval

Required Confidence Level γ = ____0.95____

Area under tail of normal curve: α = (1-γ) /2 = __0.025_______

Lower cutoff zL = ____- 1.96_______

Upper cutoff zH = _____1.96________

Optimistic Effort EO = ___0.65____ [B8]

Pessimistic Effort EP = ____3.66___ [B9]

7.3.6 Duration

Duration = A x E 0.33 + 0.2 x ([B5] - 1.01)

Where E is either [B8], [B7] or [B9] for optimistic, expected and pessimistic duration respectively.

Optimistic Duration Estimate: ___2.57___ __________ (months)

Expected Duration Estimate: ____3.73 _____________ (months)

Pessimistic Duration Estimate: ___4.78_____________ (months)

Estimator’s Comments:
As no past data was available, the value of A was set to 3.0

A 95% confidence interval was selected.

The estimation was done at the end of the requirements analysis stage (but before detailed design
commenced)

Page 76 of 88
Printed on 31/05/04

7.4 PERT Estimation Example

The project was divided into 6 work units:

• Base Classes
These were the basic classes used to represent the objects required by the algorithm. The initial
classes identified were; Edge, Vertex, AdjacencyList and Graph

• Parser
This would parser the data file into the data structures required by the rest of the program

• Breath First Search (BFS)
This was the algorithm that would perform a breath first search on the residual network

• Edmonds Karp
This was the main algorithm, responsible for solving the maximum flow problem

• GUI
This was the user interface code.

• User Manual
This was the manual to describe how to use the system, and also explain the output from some
trial runs.

This example shows forms completed by two estimators for the work unit classes “Base Classes”.
The other forms for the other units have been omitted for clarity, although the procedure is
identical.

Due to the small size of the project, the durations were estimated in hours and converted to days,
using the ratio of 5 working hours per day.

Page 77 of 88
Printed on 31/05/04

7.4.1 Individual Estimator Forms

Work Unit Name
Base Classes

Estimator Name
SN

Team Size
3

Estimates (Duration in Days)

Optimistic (O) Realistic (R) Pessimistic (P)
0.4 1 3

Figure 7.6

Page 78 of 88
Printed on 31/05/04

Work Unit Name
Base Classes

Estimator Name
PM

Team Size
3

Estimates (Duration in Days)

Optimistic (O) Realistic (R) Pessimistic (P)
2 3 5

Figure 7.7

Page 79 of 88
Printed on 31/05/04

7.4.2 Work Unit Estimate Form

Work Unit Name Base Classes
E

st
im

at
or

 N
am

e

O
pt

im
is

tic

R
ea

lis
tic

P
es

si
m

is
tic

U
na

dj
us

te
d,

 W
ei

gh
te

d
E

st
im

at
e

V
ar

ia
nc

e

E
st

im
at

or
 C

on
fid

en
ce

A
dj

us
te

d
E

st
im

at
e

A
dj

us
te

d
V

ar
ia

nc
e

(O) (R) (P) (uE) (2
uσ) (K) (aE) (2

aσ)

SN 0.4 1 3 1.07 0.187 1 1.07 0.187

PM 2 3 5 3.1 0.25 1 3.1 0.25

Figure 7.8

Average, Adjusted Estimate (vE) 2.1

Average, Adjusted Variance (2vσ) 0.22

Page 80 of 88
Printed on 31/05/04

7.4.3 Project Estimate Form

Work Unit Name

Average, Adjusted Estimate
(vE)

Average, Adjusted
Variance (2

vσ)

Base Classes 2.1 0.22

Parser 0.7 0.19

BFS 1.2 0.37

Edmonds Karp 2.3 0.43

GUI 4.1 0.78

User Manual 1.8 0.11

Figure 7.9

Total Project Estimate (E)
12.2

Total Project Variance (2σ)
2.1

Estimate Standard Deviation (σ)
1.45

Duration optimistic = σ2−E = ___9.3________ Days = __0.55___ Months

Duration expected =E = ___12.2_______ Days = __0.72___ Months

Duration pessimistic = σ2+E = ___15.1_______ Days = __0.88___ Months

Effort in person days was converted to person months using the ratio of 17 working days per
month.

Page 81 of 88
Printed on 31/05/04

7.5 Process Combination Templates

Revision Number 1

Performed By SN, PM, SW

on

Method Optimistic
Estimation of
Duration

Expected
Duration

Pessimistic
Estimation of
Duration

Accuracy
Weight

Feature Point
Analysis

[O1] = 2.3 [E1] = 2.4 [P1] = 2.5 [AW1] = 1.0

COCOMO II
Analysis

[O2] = 2.57 [E2] = 3.73 [P2] = 4.78 [AW2] = 1.0

PERT Analysis [O3] = 0.55 [E3] = 0.72 [P3] = 0.88 [AW3] = 1.0
Figure 7.10

O = Final Optimistic Duration =
321

)33()22()11(

AWAWAW

AWOAWOAWO

++
×+×+×

 = _1.80___ Months

E = Final Expected Duration =
321

)33()22()11(

AWAWAW

AWEAWEAWE

++
×+×+×

 = _2.28___ Months

P = Final Pessimistic Duration =
321

)33()22()11(

AWAWAW

AWPAWPAWP

++
×+×+×

 = _2.72___ Months

ERE = Expected Risk Exposure = _____________________________ (person –days)

Next revision due in ______1________ months

Estimator’s Comments:

Risk analysis was not performed in this example.

Interestingly enough the total time taken to complete the project was 54 hours, 10.8 person days or
0.63 person months. This did not include time for group meetings which would have added another
27 hours to the project.

Obviously there is a discrepancy between the three models used. Being a small project, the numbers
used in the feature point and COCOMO models were much lower than the values that would
typically be encountered in reasonably sized projects. It is quite likely that the models are not valid
for such small numbers, and in this case the PERT estimate should been given a higher rating. This
would take place in the PIR section.

Page 82 of 88
Printed on 31/05/04

8. Glossary

COCOMO – Constructive Cost Model. A method for evaluating the effort required to develop
software given an estimate of the software’s size.

ERE – Expected Risk Exposure. An indication of the amount of additional effort the project will
require, if the expected number of risks occur.

HPM – Hours per month. Highly orgnaisational dependant, in this tool a default values of 85 hours
per months has been used (5 hours per day, 17 days per month)

KSLOC – Kilo Source Lines of Code. See SLOC

MMRE – Mean Magnitude of Relative Error. The average of the MRE for all data points

MRE – Magnitude of relative error. The variation between the estimated value and the actual value
for an individual data point.

PERT – Program Evaluation and Review Technique. An estimation technique based on individual
estimates from a group of people. The differences between each individual’s estimate can also be
used to calculate the standard deviation.

PIR – Post Implementation Review. A procedure that is performed at the end of the project, to tune
the parameters used by the estimation tool and increase the accuracy for future estimations.

RE – Risk Exposure. A measure of the severity of a risk. Found from multiplier the probability the
risk occurs by the impact in the event that the risk occurs.

Revision - One iteration of the estimation tool. It is expected that many revisions (estimates) will
be prepared for each project. See section 4.0 on what events should trigger a revision.

SLOC – Source Lines of Code. Use to describe the number of lines of code contained within a
program

Page 83 of 88
Printed on 31/05/04

9. Bibliography

Angelis, L & Stamelos, I. 2000, A Simulation Tool for Efficient Analogy Based Cost Estimation,
Empirical Software Engineering, vol. 5, no. 1, pp. 35-68.

Boehm, B. 1981, Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs, New
Jersey.

Boehm, B., 1991, Software risk management: principles and practices, IEEE Software, vol. 8, no.
1, pp. 32-41.

Boehm, B, et al., 1995, Cost Models for Future Software Life Cycle Processes: COCOMO 2.0,
Annals of Software Engineering 1, pp 1-24.

Boehm, B. 2000, COCOMO II Model Definition Manual, [Online], Available from:
<http://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf> [1 Apr 2004]

Cormen, T. et al., 2001, Introduction to Algorithms, 2nd edn, The MIT Press.

Douglass, B. P. 1996 - 2004, Software Estimation and Scheduling, [Online], TechOnLine,
Available from:
<http://www.techonline.com/community/tech_group/embedded/tech_paper/5947/>, [20 April
2004].

Hotowitz, E. 1998, USC COCOMO II User Manual, [Online], Available from:
<http://sunset.usc.edu/research/COCOMOII/Docs/usersman.pdf>, [6 April2004]

Johnson, K, Jan 1998, Software Size Estimation, [Online], Department of Computer Science,
University of Calgary, Available from:
<http://sern.ucalgary.ca/courses/seng/621/W98/johnsonk/software.htm>, [8 April 2004].

Kemerer, C. 1993, Reliability of function points measurement: a Field Experiment,
Communications of the ACM, vol 36, no. 2, pp 85 – 97.

Kitchenham, B. & Linkman, S 1997, Estimates, Uncertainty and Risk, IEEE Software, vol. 14, no.
3, pp 69-74.

Leon-Garcia, A. 1994, Probability and Random Processes for Electrical Engineering, 2nd end,
Addison Wesley, USA

Longstreet Consulting Inc, 2003, Improved Function Point Definitions, [Online], Longstreet
Consulting Inc., Available from <http://www.ifpug.com/trainingcourse/definitions.htm> [29 March
2004]

Longstreet, D., 2003, Estimating Software Development Effort Using Function Points, [Online],
Longstreet Consulting Inc., Available from <http://www.ifpug.com/Articles/estimatingdata.htm>
[28 March 2004]

Longstreet, D., 2003, Fundamentals of Function Point Analysis, [Online], Longstreet Consulting
Inc., Available from <http://www.ifpug.com/fpafund.htm> [28 March 2004]

Page 84 of 88
Printed on 31/05/04

Miyazaki, Y. & Kuniaki M. 1985, COCOMO Evaluation and Tailoring, IEEE Computer Society
Press [14 April 2004]

Park, R. 1992, Software Size Measurement: A Framework for Counting Source Statements,
Software Engineering Institute, Ch 23.

Paulk, M., Curtis, B., 1993, Capability and Maturity Model, Version 1.1, IEEE Software, vol. 10,
no. 4, pp 68-70.

Pressman, R.S.1997, Software Engineering – A Practitioner’s Approach, 4th edn, McGraw Hill,
USA

Robare, B. & Short, D., 3 August 99, Function Points and SLOC, [Online], Naval Postgraduate
School (NPS), Available from
<http://www.nps.navy.mil/wings/acq_topics/synopsis/archives/Summer%2099/fpbrief.ppt>
[6 April 2004]

Sommerville, I. 2001, Software Engineering, 6th edn, Addison Wesley, Essex

What Are Feature Points, 6 August 2002, What Are Feature Points?, [Online], Software
Productivity Research, Available from <http://www.spr.com/products/feature.htm> [26 March
2004]

Williams, T. M., 1996, The two-dimensionality of Project Risk, International Journal of Project
Management, vol. 14, no. 3, pp. 185-186.

Page 85 of 88
Printed on 31/05/04

Appendix A – Cumulative Probabilities for the Normal
Distribution

P(Z ≤ z) where Z ~ N(0,1)

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-3 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013

-2.9 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0019 0.0019
-2.8 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0026 0.0026
-2.7 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0035 0.0035
-2.6 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0047 0.0047
-2.5 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 0.0062 0.0062
-2.4 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0082 0.0082
-2.3 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0107 0.0107
-2.2 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0139 0.0139
-2.1 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177 0.0179 0.0179

-2 0.0226 0.0226 0.0226 0.0226 0.0226 0.0226 0.0226 0.0226 0.0228 0.0228
-1.9 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0287 0.0287
-1.8 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 0.0359 0.0359
-1.7 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0442 0.0446 0.0446
-1.6 0.0544 0.0544 0.0544 0.0544 0.0544 0.0544 0.0544 0.0544 0.0548 0.0548
-1.5 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0664 0.0668 0.0668
-1.4 0.0802 0.0802 0.0802 0.0802 0.0802 0.0802 0.0802 0.0802 0.0808 0.0808
-1.3 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0968 0.0968
-1.2 0.1144 0.1144 0.1144 0.1144 0.1144 0.1144 0.1144 0.1144 0.1151 0.1151
-1.1 0.1349 0.1349 0.1349 0.1349 0.1349 0.1349 0.1349 0.1349 0.1357 0.1357

-1 0.1578 0.1578 0.1578 0.1578 0.1578 0.1578 0.1578 0.1578 0.1587 0.1587
-0.9 0.1831 0.1831 0.1831 0.1831 0.1831 0.1831 0.1831 0.1831 0.1841 0.1841
-0.8 0.2109 0.2109 0.2109 0.2109 0.2109 0.2109 0.2109 0.2109 0.2119 0.2119
-0.7 0.2409 0.2409 0.2409 0.2409 0.2409 0.2409 0.2409 0.2409 0.2420 0.2420
-0.6 0.2731 0.2731 0.2731 0.2731 0.2731 0.2731 0.2731 0.2731 0.2743 0.2743
-0.5 0.3073 0.3073 0.3073 0.3073 0.3073 0.3073 0.3073 0.3073 0.3085 0.3085
-0.4 0.3433 0.3433 0.3433 0.3433 0.3433 0.3433 0.3433 0.3433 0.3446 0.3446
-0.3 0.3808 0.3808 0.3808 0.3808 0.3808 0.3808 0.3808 0.3808 0.3821 0.3821
-0.2 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4207 0.4207
-0.1 0.4588 0.4588 0.4588 0.4588 0.4588 0.4588 0.4588 0.4588 0.4602 0.4602

0 0.4986 0.4986 0.4986 0.4986 0.4986 0.4986 0.4986 0.4986 0.5000 0.5000
0 0.5014 0.5014 0.5014 0.5014 0.5014 0.5014 0.5014 0.5014 0.5000 0.5000

0.1 0.5412 0.5412 0.5412 0.5412 0.5412 0.5412 0.5412 0.5412 0.5398 0.5398
0.2 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5806 0.5793 0.5793
0.3 0.6192 0.6192 0.6192 0.6192 0.6192 0.6192 0.6192 0.6192 0.6179 0.6179
0.4 0.6567 0.6567 0.6567 0.6567 0.6567 0.6567 0.6567 0.6567 0.6554 0.6554
0.5 0.6927 0.6927 0.6927 0.6927 0.6927 0.6927 0.6927 0.6927 0.6915 0.6915
0.6 0.7269 0.7269 0.7269 0.7269 0.7269 0.7269 0.7269 0.7269 0.7257 0.7257
0.7 0.7591 0.7591 0.7591 0.7591 0.7591 0.7591 0.7591 0.7591 0.7580 0.7580
0.8 0.7891 0.7891 0.7891 0.7891 0.7891 0.7891 0.7891 0.7891 0.7881 0.7881
0.9 0.8169 0.8169 0.8169 0.8169 0.8169 0.8169 0.8169 0.8169 0.8159 0.8159

1 0.8422 0.8422 0.8422 0.8422 0.8422 0.8422 0.8422 0.8422 0.8413 0.8413
1.1 0.8651 0.8651 0.8651 0.8651 0.8651 0.8651 0.8651 0.8651 0.8643 0.8643
1.2 0.8856 0.8856 0.8856 0.8856 0.8856 0.8856 0.8856 0.8856 0.8849 0.8849
1.3 0.9038 0.9038 0.9038 0.9038 0.9038 0.9038 0.9038 0.9038 0.9032 0.9032
1.4 0.9198 0.9198 0.9198 0.9198 0.9198 0.9198 0.9198 0.9198 0.9192 0.9192
1.5 0.9336 0.9336 0.9336 0.9336 0.9336 0.9336 0.9336 0.9336 0.9332 0.9332
1.6 0.9456 0.9456 0.9456 0.9456 0.9456 0.9456 0.9456 0.9456 0.9452 0.9452
1.7 0.9558 0.9558 0.9558 0.9558 0.9558 0.9558 0.9558 0.9558 0.9554 0.9554
1.8 0.9643 0.9643 0.9643 0.9643 0.9643 0.9643 0.9643 0.9643 0.9641 0.9641
1.9 0.9715 0.9715 0.9715 0.9715 0.9715 0.9715 0.9715 0.9715 0.9713 0.9713

2 0.9774 0.9774 0.9774 0.9774 0.9774 0.9774 0.9774 0.9774 0.9772 0.9772
2.1 0.9823 0.9823 0.9823 0.9823 0.9823 0.9823 0.9823 0.9823 0.9821 0.9821
2.2 0.9862 0.9862 0.9862 0.9862 0.9862 0.9862 0.9862 0.9862 0.9861 0.9861
2.3 0.9894 0.9894 0.9894 0.9894 0.9894 0.9894 0.9894 0.9894 0.9893 0.9893
2.4 0.9919 0.9919 0.9919 0.9919 0.9919 0.9919 0.9919 0.9919 0.9918 0.9918
2.5 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9939 0.9938 0.9938
2.6 0.9954 0.9954 0.9954 0.9954 0.9954 0.9954 0.9954 0.9954 0.9953 0.9953
2.7 0.9966 0.9966 0.9966 0.9966 0.9966 0.9966 0.9966 0.9966 0.9965 0.9965
2.8 0.9975 0.9975 0.9975 0.9975 0.9975 0.9975 0.9975 0.9975 0.9974 0.9974
2.9 0.9982 0.9982 0.9982 0.9982 0.9982 0.9982 0.9982 0.9982 0.9981 0.9981

3 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987

Page 86 of 88
Printed on 31/05/04

Appendix B – Code Counting Checklist

This is an example checklist for counting lines of code, taken from Software Size Measurement: A
Framework for Counting Source Statements (Park 1992). For each type of statement (executable,
declarations, compiler directives etc.) a decision must be made as to whether statements of this type
will be included in the final KSLOC count. Once a decision has been made, a tick is placed in
either the include or exclude column. This process is then repeated for the rest of the template.

When the code is to be counted. The first category that the line matches, is the one that decided if it
is included in the count or not. So for example, a line that has an executable statement, as well as a
comment, would match the Executable statement type (and presumably be included in the count).

Space has been left throughout the template for the organisation to include it’s own definitions

Page 87 of 88
Printed on 31/05/04

Definition Name Date

Originator

Statement Type Include Exclude
1 Excecutable Order of Precedence -> 1
2 Nonexecutable
3 Declarations 2
4 Compiler Directives 3
5 Comments
6 On their own lines 4
7 On lines with source code 5
8 Banners and non black spaces 6
9 Blank (empty) comments 7
10 Blank lines 8
11
12
How Produced Include Exclude
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or re-used without change
5 Modified
6 Removed
7
8
Origin Include Exclude
1 New work: no prior existance
2 Prior work: taken or adapted from
3 A previous version or build
4 Commercial, off the shelf, other than libraries
5 Government furnished software, other than reuse

libraries
6 Another product
7 A vendor supplied language support library
8 A vendor supplied operating system or utility
9 A local or modified language library of operating system
10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14
Usage Include Exclude
1 In or as part of the primary product
2 External to or in support of the primary product
3

Page 88 of 88
Printed on 31/05/04

Appendix C – Example Code Counting Checklist

Definition Name
Physical Source Lines of Code

Date
8/7/92

Originator
SEI

Statement Type Include Exclude
1 Excecutable Order of Precedence -> 1 ●

2 Nonexecutable
3 Declarations 2 ●

4 Compiler Directives 3 ●

5 Comments
6 On their own lines 4 ●

7 On lines with source code 5 ●

8 Banners and non black spaces 6 ●

9 Blank (empty) comments 7 ●

10 Blank lines 8 ●

11
12
How Produced Include Exclude
1 Programmed ●

2 Generated with source code generators ●

3 Converted with automated translators ●

4 Copied or re-used without change ●

5 Modified ●

6 Removed ●

7
8
Origin Include Exclude
1 New work: no prior existance ●

2 Prior work: taken or adapted from
3 A previous version or build ●

4 Commercial, off the shelf, other than libraries ●

5 Government furnished software, other than reuse
libraries

●

6 Another product ●

7 A vendor supplied language support library ●

8 A vendor supplied operating system or utility ●

9 A local or modified language library of operating system ●

10 Other commercial library ●

11 A reuse library (software designed for reuse) ●

12 Other software component or library ●

13
14
Usage Include Exclude
1 In or as part of the primary product ●

2 External to or in support of the primary product ●

3

